Skip to main content
Log in

Influence of in situ silica gel supporting on the pore structure stability of polyacrylonitrile-based thermally crosslinked organic solvent nanofiltration membrane

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, in situ sol–gel strategy was used to introduce silica gel in polyacrylonitrile (PAN) membrane pores, by which the pore structure of organic solvent nanofiltration (OSN) membrane prepared with thermal crosslinking was maintained well. The chemical structure, microstructure and morphology changes of membrane during sol–gel and thermal crosslinking were systematically studied by FTIR, XPS, XRD and SEM. Benefitting from the introduction of silica gel, the fusion of membrane pore structure during thermal crosslinking was effectively inhibited by supporting the pore with silica gel. Therefore, the permeances of the thermally crosslinked membranes supported by in situ silica gel were greatly improved. Furthermore, the thermally crosslinked membrane showed excellent stability of OSN performance due to the generated ladder structure of membrane during thermal crosslinking. This work showed that in situ silica gel supporting is a promising strategy to stabilize the pore structure of PAN membrane during thermal crosslinking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Data availability

The data of this paper can be shared upon request.

References

  1. Sholl DS, Lively RP (2016) Seven chemical separations to change the world. Nature 532:435–437

    Article  Google Scholar 

  2. Shen J, Liu G, Han Y, Jin W (2021) Artificial channels for confined mass transport at the sub-nanometre scale. Nat Rev Mater 6:294–312

    Article  CAS  Google Scholar 

  3. Xu X, Wang Z, Yagoub H, Li X, Liang S, Jin Y, Zhu L, Yang S (2019) Nanofiltration membrane constructed by tuning the chain interactions of polymer complexation. J Membr Sci 580:289–295

    Article  CAS  Google Scholar 

  4. Wang K, Wang X, Januszewski B, Liu Y, Li D, Fu R, Elimelech M, Huang X (2022) Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships. Chem Soc Rev 51:672–719

    Article  CAS  Google Scholar 

  5. Yan X-Y, Wang Q, Wang Y, Fu Z-J, Wang Z-Y, Mamba B, Sun S-P (2022) Designing durable self-cleaning nanofiltration membranes via sol-gel assisted interfacial polymerization for textile wastewater treatment. Sep Purif Technol 289:120752

    Article  CAS  Google Scholar 

  6. Zhang T, Li P, Ding S, Wang X (2021) High permeability composite nanofiltration membrane assisted by introducing TpPa covalent organic frameworks interlayer with nanorods for desalination and NaCl/dye separation. Sep Purif Technol 270:118802

    Article  CAS  Google Scholar 

  7. Zhao Y, Lai GS, Li C, Wang R (2023) Acid-resistant polyamine hollow fiber nanofiltration membrane for selective separation of heavy metals and phosphorus. Chem Eng J 453:139825

    Article  CAS  Google Scholar 

  8. Lv Y, Yang H-C, Liang H-Q, Wan L-S, Xu Z-K (2015) Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking. J Membr Sci 476:50–58

    Article  CAS  Google Scholar 

  9. Han C, Liu Q, Xia Q, Wang Y (2022) Facilely cyclization-modified PAN nanofiber substrate of thin film composite membrane for ultrafast polar solvent separation. J Membr Sci 641:119911

    Article  CAS  Google Scholar 

  10. Xu YC, Tang YP, Liu LF, Guo ZH, Shao L (2017) Nanocomposite organic solvent nanofiltration membranes by a highly-efficient mussel-inspired co-deposition strategy. J Membr Sci 526:32–42

    Article  CAS  Google Scholar 

  11. Oxley A, Livingston AG (2022) Anti-fouling membranes for organic solvent nanofiltration (OSN) and organic solvent ultrafiltration (OSU): graft modified polybenzimidazole (PBI). J Membr Sci 662:120977

    Article  CAS  Google Scholar 

  12. Xu YC, Cheng XQ, Long J, Shao L (2016) A novel monoamine modification strategy toward high-performance organic solvent nanofiltration (OSN) membrane for sustainable molecular separations. J Membr Sci 497:77–89

    Article  CAS  Google Scholar 

  13. Marchetti P, Jimenez Solomon MF, Szekely G, Livingston AG (2014) Molecular separation with organic solvent nanofiltration: a critical review. Chem Rev 114:10735–10806

    Article  CAS  Google Scholar 

  14. Loh XX, Sairam M, Bismarck A, Steinke JHG, Livingston AG, Li K (2009) Crosslinked integrally skinned asymmetric polyaniline membranes for use in organic solvents. J Membr Sci 326:635–642

    Article  CAS  Google Scholar 

  15. Valtcheva IB, Kumbharkar SC, Kim JF, Bhole Y, Livingston AG (2014) Beyond polyimide: crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments. J Membr Sci 457:62–72

    Article  CAS  Google Scholar 

  16. Lee J, Yang H, Park G, Bae T-H (2022) Highly stable epoxy-crosslinked polybenzimidazole membranes for organic solvent nanofiltration under strongly basic conditions. J Membr Sci 661:120951

    Article  CAS  Google Scholar 

  17. Strużyńska-Piron I, Bilad MR, Loccufier J, Vanmaele L, Vankelecom IFJ (2014) Influence of UV curing on morphology and performance of polysulfone membranes containing acrylates. J Membr Sci 462:17–27

    Article  Google Scholar 

  18. Li X, Fustin C-A, Lefèvre N, Gohy J-F, Feyter SD, Baerdemaeker JD, Egger W, Vankelecom IFJ (2010) Ordered nanoporous membranes based on diblock copolymers with high chemical stability and tunable separation properties. J Mater Chem 20:4333–4339

    Article  CAS  Google Scholar 

  19. Sairam M, Loh XX, Li K, Bismarck A, Steinke JHG, Livingston AG (2009) Nanoporous asymmetric polyaniline films for filtration of organic solvents. J Membr Sci 330:166–174

    Article  CAS  Google Scholar 

  20. Sairam M, Loh XX, Bhole Y, Sereewatthanawut I, Li K, Bismarck A, Steinke JHG, Livingston AG (2010) Spiral-wound polyaniline membrane modules for organic solvent nanofiltration (OSN). J Membr Sci 349:123–129

    Article  CAS  Google Scholar 

  21. Chisca S, Musteata V-E, Zhang W, Vasylevskyi S, Falca G, Abou-Hamad E, Emwas A-H, Altunkaya M, Nunes SP (2022) Polytriazole membranes with ultrathin tunable selective layer for crude oil fractionation. Science 376:1105–1110

    Article  CAS  Google Scholar 

  22. Wang S, Wang N, Kai D, Li B, Wu J, Yeo JCC, Xu X, Zhu J, Loh XJ, Hadjichristidis N, Li Z (2023) In-situ forming dynamic covalently crosslinked nanofibers with one-pot closed-loop recyclability. Na Commun 14:1182

    Article  CAS  Google Scholar 

  23. Hu J, Hardian R, Gede M, Holtzl T, Szekely G (2022) Reversible crosslinking of polybenzimidazole-based organic solvent nanofiltration membranes using difunctional organic acids: toward sustainable crosslinking approaches. J Membr Sci 648:120383

    Article  CAS  Google Scholar 

  24. Zhang W, Sun M, Wu D, Zhang W, Pan B (2022) Efficient Metal Cutting Fluid Wastewater Separation of Polyacrylonitrile Ultrafiltration Membranes Enabled by Metal Ion Cross-Linking. ACS ES&T Water 2:1143–1151

    Article  CAS  Google Scholar 

  25. Hardian R, Pogany P, Lee YM, Szekely G (2021) Molecular sieving using metal–polymer coordination membranes in organic media. J Mater Chem A 9:14400–14410

    Article  CAS  Google Scholar 

  26. Feng W, Li J, Fang C, Zhang L, Zhu L (2022) Controllable thermal annealing of polyimide membranes for highly-precise organic solvent nanofiltration. J Membr Sci 643:120013

    Article  CAS  Google Scholar 

  27. Jin X, Li L, Xu R, Liu Q, Ding L, Pan Y, Wang C, Hung W, Lee K, Wang T (2018) Effects of thermal cross-linking on the structure and property of asymmetric membrane prepared from the polyacrylonitrile. Polymers 10:539

    Article  Google Scholar 

  28. Zhang Y, Wang L, Li L, Wang H, Dong X, Pan Y, Wang T (2023) Insight into the influences of thermal crosslinking on the transition from polyacrylonitrile based ultrafiltration membrane to organic solvent nanofiltration membrane. J Membr Sci 679:121694

    Article  CAS  Google Scholar 

  29. Koh D-Y, McCool BA, Deckman HW, Lively RP (2016) Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes. Science 353:804–807

    Article  CAS  Google Scholar 

  30. Li W, Yang Z, Meng Q, Shen C, Zhang G (2014) Thermally stable and solvent resistant self-crosslinked TiO2/PAN hybrid hollow fiber membrane fabricated by mutual supporting method. J Membr Sci 467:253–261

    Article  CAS  Google Scholar 

  31. Gao J, Wang X, Zhang J, Guo R (2016) Preparation of heat-treated PAN/SiO2 hybrid hollow fiber membrane contactor for acetylene absorption. Sep Purif Technol 159:116–123

    Article  CAS  Google Scholar 

  32. Bhuwania N, Labreche Y, Achoundong CSK, Baltazar J, Burgess SK, Karwa S, Xu L, Henderson CL, Williams PJ, Koros WJ (2014) Engineering substructure morphology of asymmetric carbon molecular sieve hollow fiber membranes. Carbon 76:417–434

    Article  CAS  Google Scholar 

  33. Zhang C, Zhang K, Cao Y, Koros WJ (2018) Composite carbon molecular sieve hollow fiber membranes: resisting support densification via silica particle stabilization. Ind Eng Chem Res 57:16051–16058

    Article  CAS  Google Scholar 

  34. Zhang Y, Zhao J, Chu H, Zhou X, Wei Y (2014) Effect of modified attapulgite addition on the performance of a PVDF ultrafiltration membrane. Desalination 344:71–78

    Article  CAS  Google Scholar 

  35. Li J-F, Xu Z-L, Yang H, Yu L-Y, Liu M (2009) Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl Surf Sci 255:4725–4732

    Article  CAS  Google Scholar 

  36. Nguyen-Thai NU, Hong SC (2013) Structural evolution of poly(acrylonitrile-co-itaconic acid) during thermal oxidative stabilization for carbon materials. Macromolecules 46:5882–5889

    Article  CAS  Google Scholar 

  37. Moskowitz JD, Jacobs W, Tucker A, Astrove M, Harmon B (2020) Thermo-oxidative stabilization of polyacrylonitrile-based copolymers with guanidinium itaconate. Polym Degrad Stab 178:109198

    Article  CAS  Google Scholar 

  38. Yu Y, Ma Q, Zhang J-B, Liu G-B (2020) Electrospun SiO2 aerogel/polyacrylonitrile composited nanofibers with enhanced adsorption performance of volatile organic compounds. Appl Surf Sci 512:145697

    Article  CAS  Google Scholar 

  39. Hu Y, Lü Z, Wei C, Yu S, Liu M, Gao C (2018) Separation and antifouling properties of hydrolyzed PAN hybrid membranes prepared via in-situ sol-gel SiO2 nanoparticles growth. J Membr Sci 545:250–258

    Article  CAS  Google Scholar 

  40. Cai H, Jiang Y, Chen Q, Zhang S, Li L, Feng J, Feng J (2020) Sintering behavior of SiO2 aerogel composites reinforced by mullite fibers via in-situ rapid heating TEM observations. J Eur Ceram Soc 40:127–135

    Article  CAS  Google Scholar 

  41. Chen F, Zhang Y, Liu J, Wang X, Chu PK, Chu B, Zhang N (2020) Fly ash based lightweight wall materials incorporating expanded perlite/SiO2 aerogel composite: Towards low thermal conductivity. Constr Build Mater 249:118728

    Article  CAS  Google Scholar 

  42. Gurav JL, Rao AV, Bangi UKH (2009) Hydrophobic and low density silica aerogels dried at ambient pressure using TEOS precursor. J Alloys Compd 471:296–302

    Article  CAS  Google Scholar 

  43. Yu Y, Xu J, Wang G, Zhang R, Peng X (2020) Preparation of paraffin/SiO2 aerogel stable-stabilized phase change composites for high-humidity environment. J Mater Sci 55:1511–1524

    Article  CAS  Google Scholar 

  44. Yang Z, Zhu D, Li H (2020) A chitosan-assisted co-assembly synthetic route to low-shrinkage Al2O3–SiO2 aerogel via ambient pressure drying. Microporous Mesoporous Mater 293:109781

    Article  CAS  Google Scholar 

  45. Xu LH, Wang LM, Pan H, Shen Y, Ding Y, Zhang XY, Sheng Y (2019) Preparation of Superhydrophobic Porous SiO2 Aerogel Using Methyl Trimethoxy Silane Single Precursor and Superhydrophobic Cotton Fabric Coating from It. J Nanosci Nanotechnol 19:7799–7809

    Article  CAS  Google Scholar 

  46. Schulze MC, Prieto AL (2022) Mixed-conducting properties of annealed polyacrylonitrile activated by n-doping of conjugated domains. Chem Sci 13:225–235

    Article  CAS  Google Scholar 

  47. Fu Z, Liu B, Sun L, Zhang H (2017) Study on the thermal oxidative stabilization reactions and the formed structures in polyacrylonitrile during thermal treatment. Polym Degrad Stab 140:104–113

    Article  CAS  Google Scholar 

  48. Xiao S, Wang B, Zhao C, Xu L, Chen B (2013) Influence of oxygen on the stabilization reaction of polyacrylonitrile fibers. J Appl Polym Sci 127:2332–2338

    Article  CAS  Google Scholar 

  49. Xue Y, Liu J, Liang J (2013) Kinetic study of the dehydrogenation reaction in polyacrylonitrile-based carbon fiber precursors during thermal stabilization. J Appl Polym Sci 127:237–245

    Article  CAS  Google Scholar 

  50. Wu S, Gao A, Xu L (2018) Effect of In situ thermal stretching during oxidative stabilization on the orientation of cyclized ladder structure and its carbon fiber. Fibers Polym 19:1184–1193

    Article  CAS  Google Scholar 

  51. Li J, Cheng L, Song W, Xu Y, Liu F, Wang Z (2022) In-situ sol-gel generation of SiO2 nanoparticles inside polyamide membrane for enhanced nanofiltration. Desalination 540:115981

    Article  CAS  Google Scholar 

  52. Shen M, Jiang X, Zhang M, Guo M (2019) Synthesis of SiO2–Al2O3 composite aerogel from fly ash: a low-cost and facile approach. J Sol-Gel Sci Technol 93:281–290

    Article  Google Scholar 

  53. Wang W, Wang C, Gao Q, Chen M, Wang Y, Yao Z (2019) A new perspective on the internal structure of polyacrylonitrile-based preoxidized fibers through ultrathin sections. Polym Degrad Stab 167:269–276

    Article  Google Scholar 

  54. Li W, Yang Z, Zhang G, Meng Q (2013) Heat-treated polyacrylonitrile (PAN) hollow fiber structured packings in isopropanol (IPA)/water distillation with improved thermal and chemical stability. Ind Eng Chem Res 52:6492–6501

    Article  CAS  Google Scholar 

  55. Fan H, Gu J, Meng H, Knebel A, Caro J (2018) High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration. Angew Chem Int Ed 57:4083–4087

    Article  CAS  Google Scholar 

  56. Li X, De Feyter S, Vankelecom IFJ (2008) Poly(sulfone)/sulfonated poly(ether ether ketone) blend membranes: morphology study and application in the filtration of alcohol based feeds. J Membr Sci 324:67–75

    Article  CAS  Google Scholar 

  57. Xu Y, You F, Sun H, Shao L (2017) Realizing mussel-inspired polydopamine selective layer with strong solvent resistance in nanofiltration toward sustainable reclamation. ACS Sustain Chem Eng 5:5520–5528

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge for the financial support from National Key R&D Program of China (2021YFB3801200), National Natural Science Foundation of China (22278051, 21978034, 22178044), Science and Technology Innovation foundation of CNPC (2022DQ02-0608), Fundamental Research Funds for the Central Universities (DUT2021TD03) and Dalian Innovation Team Support Plan in Key Areas (No. 2019RT10).

Author information

Authors and Affiliations

Authors

Contributions

Yongyue Zhang: Conceptualization, Methodology, Investigation, Writing—original draft. Lin Li: Conceptualization, Supervision, Funding acquisition, Writing—review & editing. Hua Wang: Visualization, Investigation, Formal analysis. Xiaowen Wang: Investigation, Formal analysis. Yanqiu Pan: Conceptualization, Supervision, Writing—review & editing. Tonghua Wang: Conceptualization, Supervision, Funding acquisition, Writing—review & editing.

Corresponding authors

Correspondence to Lin Li or Yanqiu Pan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical approval

This paper does not involve experiments on humans or animals.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 6970 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, L., Wang, H. et al. Influence of in situ silica gel supporting on the pore structure stability of polyacrylonitrile-based thermally crosslinked organic solvent nanofiltration membrane. J Mater Sci 59, 728–741 (2024). https://doi.org/10.1007/s10853-023-09251-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09251-3

Navigation