Skip to main content

Advertisement

Log in

Solid propellant liner with high anti-migration and strong adhesion based on isocyanate-functionalized graphene oxide and hydroxy-terminated polybutadiene

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The migration of excess plasticizer seriously affects the safety of propellants. In this paper, GO was functionalized with isocyanate groups (TGO) to improve its morphology, size, and reactivity. The composite liner with a multi-crosslinked structure was prepared, and its anti-migration properties were systematically studied. TGO fillers were added to the matrix to participate in crosslinking. A denser microstructure was constructed, which reduced the number and size of pores that small molecules could pass through, thus reducing their migration. The microstructure, anti-migration performance, and adhesion of the liner with 0.2 wt% TGO showed the greatest improvement. Compared with the hydroxy-terminated polybutadiene (HTPB) liner, the crystallinity percentage of the TGO/HTPB composite liner was 28.49% higher, and the crosslink density was 7.11% higher. The concentration of dioctyl sebacate (DOS) that migrated into the liner was decreased by 32.25%. In addition, the adhesion strength increased from 0.25 MPa to 1.56 MPa, which meets the requirements of current propellant systems. This study provides a feasible way to optimize the anti-migration and adhesion properties of composite liners.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Hoffmann L, Bizarria F, Bizarria J (2020) Detection of liner surface defects in solid rocket motors using multilayer perceptron neural networks. Polym Test 88:106559. https://doi.org/10.1016/j.polymertesting.2020.106559

    Article  CAS  Google Scholar 

  2. Ghosh K, Gaikwad LV, Kalal RK et al (2020) Light weight HTPB-clay nanocomposites (HCN) with enhanced ablation performance as inhibition materials for composite propellant. Def Technol 17(2):559–570. https://doi.org/10.1016/j.dt.2020.03.011

    Article  Google Scholar 

  3. Xiao Z, Jian Z, Fang H et al (2018) High dimensional stability and low viscous response solid propellant binder based on graphene oxide nanosheets and dual cross-linked polyurethane. Compos Sci Technol 161:124–134. https://doi.org/10.1016/j.compscitech.2018.04.012

    Article  CAS  Google Scholar 

  4. Malkappa K, Rao BN, Suresh G et al (2018) Organic/inorganic hybrid nanocolloids of water dispersible polyurethanes with antibacterial activity. Colloid Polym Sci 296:95–106. https://doi.org/10.1007/s00396-017-4229-z

    Article  CAS  Google Scholar 

  5. Jana TM et al (2016) Functionalized polybutadiene diol based hydrophobic, water dispersible polyurethane nanocomposites: role of organo-clay structure. Polymers 99:404–416. https://doi.org/10.1016/j.polymer.2016.07.039

    Article  CAS  Google Scholar 

  6. Rao BN, Malkappa K, Kumar N et al (2019) Ferrocene grafted hydroxyl terminated polybutadiene: a binder for propellant with improved burn rate. Polymer 163(1):162–170. https://doi.org/10.1016/j.polymer.2019.01.008

    Article  CAS  Google Scholar 

  7. Zhang P, Yuan J, Pang A et al (2020) A novel UV-curing liner for NEPE propellant: insight from molecular simulations. Compos Part B-Eng 195:108087. https://doi.org/10.1016/j.compositesb.2020.108087

    Article  CAS  Google Scholar 

  8. Yang Y, Zhao F, Huang X et al (2020) Reinforced combustion of the ZrH2-HMX-CMDB propellant: the critical role of hydrogen. Chem Eng J 402:126275. https://doi.org/10.1016/j.cej.2020.126275

    Article  CAS  Google Scholar 

  9. Vijay C, Ramakrishna PA (2020) Estimation of burning characteristics of AP/HTPB composite solid propellant using a sandwich model. Combust Flame 217(9):321–330. https://doi.org/10.1016/j.combustflame.2020.04.006

    Article  CAS  Google Scholar 

  10. Hoffimann L, Bizarria F, Bizarria J (2020) Detection of liner surface defects in solid rocket motors using multilayer perceptron neural networks. Polym Test 88:106559. https://doi.org/10.1016/j.polymertesting.2020.106559

    Article  CAS  Google Scholar 

  11. Rezaei-Vahidian H, Farajpour T, Abdollahi M (2019) Using an inhibitor to prevent plasticizer migration from polyurethane matrix to EPDM based substrate. Chin J Polym Sci 37:681–686

    Article  CAS  Google Scholar 

  12. Zhang M, Zhao F, An T et al (2020) Catalytic effects of rGO-MFe2O4 (M = Ni, Co and Zn) nanocomposites on the thermal decomposition performance and mechanism of energetic FOX-7. J Phys Chem A 124:1673–1681. https://doi.org/10.1021/acs.jpca.9b09711

    Article  CAS  Google Scholar 

  13. Zhang M, Zhao FQ, Yang YJ et al (2020) Catalytic activity of ferrates (NiFe2O4, ZnFe2O4 and CoFe2O4) on the thermal decomposition of ammonium perchlorate. Propell Explos Pyrot 45(3):463–471. https://doi.org/10.1002/prep.201900211

    Article  CAS  Google Scholar 

  14. Zhang N, Zhang GF, Li JZ et al (2018) Ionic Ferrocenyl Coordination Compounds Derived From Imidazole and 1,2,4-triazole ligands and their catalytic effects during combustion. J Inorg General Chem 644:337–345. https://doi.org/10.1002/zaac.201700429

    Article  CAS  Google Scholar 

  15. Yu Z, Wang W, Yao w, et al (2019) Simulation for the migration of nitrate ester plasticizers in different liners contacting with propellant by molecular dynamics. J Energ Mater 39(1):74–85. https://doi.org/10.1080/07370652.2020.1756987

    Article  CAS  Google Scholar 

  16. Gui D, Zong Y, Ding S et al (2017) In-situ characterization and cure kinetics in NEPE propellant/ HTPB liner interface by microscopic FT-IR. Propell Explos Pyrot 42:410–416. https://doi.org/10.1002/prep.201600087

    Article  CAS  Google Scholar 

  17. Milekhin YM, Koptelov AA, Shishov NI et al (2018) Evaporation of plasticizer from NEPE type propellant. Russ J Appl Chem 91(5):802–812. https://doi.org/10.1134/S1070427218050117

    Article  CAS  Google Scholar 

  18. Zhao B, Zhang T, Wang Z et al (2017) Kinetics of Bu-NENA evaporation from Bu-NENA/NC propellant determined by isothermal thermogravimetry. Propell Explos Pyrot 42(3):253–259. https://doi.org/10.1002/prep.201600054

    Article  CAS  Google Scholar 

  19. Sagade AA, Aria AI, Edge S et al (2017) Graphene-based nanolaminates as ultra-high permeation barriers. NPJ Mater Appl 3:5. https://doi.org/10.1038/s41699-017-0037-Z

    Article  Google Scholar 

  20. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  21. Bunch JS, Verbridge SS, Alden JS et al (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8(8):2458–2462. https://doi.org/10.1021/nl801457b

    Article  CAS  Google Scholar 

  22. Morelos-Gomez A, Cruz-Silva R, Muramatsu H et al (2017) Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nat Nanotechnol 12(11):1083–1088. https://doi.org/10.1038/nnano.2017.160

    Article  CAS  Google Scholar 

  23. Jiang DE, Cooper VR, Dai S (2009) Porous graphene as the ultimate membrane for gas separation. Nano Lett 9(12):4019–4024. https://doi.org/10.1021/nl9021946

    Article  CAS  Google Scholar 

  24. Li H, Wei J, Zhang YN et al (2021) GO/HTPB composite liner for anti-migration of small molecules. Def Technol. https://doi.org/10.1016/j.dt.2021.11.006

    Article  Google Scholar 

  25. Kumar A, Piana F, Micusik M et al (2016) Preparation of graphite derivatives by selective reduction of graphite oxide and isocyanate functionalization. Mater Chem Phys 182:237–245. https://doi.org/10.1016/j.matchemphys.2016.07.028

    Article  CAS  Google Scholar 

  26. Li Y, Zhou M, Xia Z et al (2020) Facile preparation of polyaniline covalently grafted to isocyanate functionalized reduced graphene oxide nanocomposite for high performance flexible supercapacitors. Colloid Surface A 602:125172. https://doi.org/10.1016/j.colsurfa.2020.125172

    Article  CAS  Google Scholar 

  27. Bai JJ, Hu GS, Zhang JT et al (2019) Preparation and rheology of isocyanate functionalized graphene oxide/thermoplastic polyurethane elastomer nanocomposites. J Macromol Sci B 58(3):1–17. https://doi.org/10.1080/00222348.2019.1565102

    Article  CAS  Google Scholar 

  28. Zhang L, He Y, Feng S et al (2016) Preparation and tribological properties of novel boehmite/graphene oxide nano-hybrid. Ceram Int 42(5):6178–6186. https://doi.org/10.1016/j.ceramint.2015.12.178

    Article  CAS  Google Scholar 

  29. Chao G, Yu XY, Xu RX et al (2012) AlOOH-reduced graphene oxide nanocomposites: one-pot hydrothermal synthesis and their enhanced electrochemical activity for heavy metal ions. ACS Appl Mater Inter 4(4):4672–4682. https://doi.org/10.1021/am3010434

    Article  CAS  Google Scholar 

  30. Lin P, Meng L, Huang Y et al (2015) Simultaneously functionalization and reduction of graphene oxide containing isocyanate groups. Appl Surf Sci 324(2):784–790. https://doi.org/10.1016/j.apsusc.2014.11.038

    Article  CAS  Google Scholar 

  31. Zhuang L, Zhi X, Du B et al (2020) Preparation of elastic and antibacterial chitosan-citric membranes with high oxygen barrier ability by in situ cross-linking. ACS Omega 5(2):1086–1097. https://doi.org/10.1021/acsomega.9b03206

    Article  CAS  Google Scholar 

  32. Padwal MB, Varma M (2018) Thermal decomposition and combustion characteristics of HTPB-coarse AP composite solid propellants catalyzed with Fe2O3. Combust Sci Technol 190(9):1–16. https://doi.org/10.1080/00102202.2018.1460599

    Article  CAS  Google Scholar 

  33. Gong X, Yin H, Zhang M et al (2020) Effects of dual-crosslinking networks on shape memory performance of polynorbornene. J Appl Polym Sci. https://doi.org/10.1002/app.48955

    Article  Google Scholar 

  34. Hu RF, Ji GC, Zhao J et al (2021) The preparation of dual cross-linked high strain composite gel with manifold excellent properties and its application as a strain sensor. Compos Sci Technol 217:109110. https://doi.org/10.1016/j.compscitech.2021.109110

    Article  CAS  Google Scholar 

  35. Sung G, Kim JW, Kim JH (2016) Fabrication of polyurethane composite foams with magnesium hydroxide filler for improved sound absorption. JJ Ind Eng Chem 44:99–104. https://doi.org/10.1016/j.jiec.2016.08.014

    Article  CAS  Google Scholar 

  36. Wang ZJ, Qiang WH (2021) Mechanical properties of thermal aged HTPB composite solid propellant under confining pressure. Def Technol. https://doi.org/10.1016/j.dt.2021.06.014

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (22005145), the Opening Project of Key Laboratory of Special Energy Materials (Nanjing University of Science and Technology), Ministry of Education, China, the Fundamental Research Funds for the Central Universities (No. 30919011404), the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanan Zhang or Yubing Hu.

Ethics declarations

Competing interest

We declare that they have no competing interests.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Jiang, W., Zhang, Y. et al. Solid propellant liner with high anti-migration and strong adhesion based on isocyanate-functionalized graphene oxide and hydroxy-terminated polybutadiene. J Mater Sci 57, 14413–14429 (2022). https://doi.org/10.1007/s10853-022-07523-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07523-y

Navigation