Skip to main content
Log in

Dyeable electroconductive cotton wrapped CNT yarn for multifunctional textiles

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Conductive fiber plays increasingly important role in the field of multifunctional textile and smart clothing for the signal/power transmission, electrothermal function and so on. However, their major bottle necks are rigid, undyeable and limited durability. In this study, we manufactured a dyeable, washable and flexible conductive yarn by wrapping cotton roving fiber (wrapped fiber) on the surface of Carbon Nanotube (CNT) fiber (core yarn) and twisting them together by core-spun yarn spinning technique, named as cotton wrapped CNT yarn (CWC yarn). The appearance and flexibility of the CWC yarn are similar with the cotton yarn, but showing excellent conductivities of 100 Ω/cm, (undyed CWC yarn) and 50 Ω/cm (dyed CWC yarn). The electrothermal temperature of the CWC yarn with length of 5 cm reached 70 °C with applied voltage of 20 V, which was even higher than that of the pristine CNT yarn (60 °C). Furthermore, its electrical and electrothermal property changed slightly after being loaded, bent, knotted, fold-released (100 cycles) and washed, showing excellent durability. In addition, the electrochromatically dyed CWC yarn after weaving or embroidering into fabrics displayed changed colors with the various applied voltages. This work demonstrated a simple and referential method to design dyeable and washable multifunctional yarns for wearable applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wang W, Yu A, Zhai J, Wang ZL (2021) Recent progress of functional fiber and textile triboelectric nanogenerators: towards electricity power generation and intelligent sensing. Adv Fiber Mater. https://doi.org/10.1007/s42765-021-00077-9

    Article  Google Scholar 

  2. Cai G, Yang M, Pan J, Cheng D, Xia Z, Xin W, Tang B (2018) Large-scale production of highly stretchable CNT/Cotton/Spandex composite yarn for wearable applications. ACS Appl Mater Interfaces 10(38):32726–32735. https://doi.org/10.1021/acsami.8b11885

    Article  CAS  Google Scholar 

  3. Liu W, Liu N, Gao Y, Wang S, Cheng Q, Xu F (2018) Strain sensing fabric integrated with carbon nanotube yarn for wearable applications. Text Res J 89(15):3048–3055. https://doi.org/10.1177/0040517518807441

    Article  CAS  Google Scholar 

  4. Nela L, Tang J, Cao Q, Tulevski GS, Han SJ (2018) Large-Area high-performance flexible pressure sensor with carbon nanotube active matrix for electronic skin. Nano Lett 18(3):2054–2059. https://doi.org/10.1021/acs.nanolett.8b00063

    Article  CAS  Google Scholar 

  5. Lv S, Shuai L, Ding W, Ke W, Wang B, Wan J (2021) Flexible humidity sensitive fiber with swellable metal-organic frameworks. Adv Fiber Mater 3(2):107–116. https://doi.org/10.1007/s42765-021-00064-0

    Article  Google Scholar 

  6. Xu F, Aouraghe MA, Xie X, Zheng L, Fu KK (2021) Highly stretchable, fast thermal response carbon nanotube composite heater. Compos Part A: Appl Sci Manuf 147(19):106471. https://doi.org/10.1016/j.compositesa.2021.106471

    Article  CAS  Google Scholar 

  7. Xue L, Fan W, Yu Y, Dong K, Liu C, Sun Y, Zhang C, Chen W, Lei R, Rong K, Wang Q (2021) A novel strategy to fabricate core-sheath structure piezoelectric yarns for wearable energy harvesters. Adv Fiber Mater 3:239–250. https://doi.org/10.1007/s42765-021-00081-z

    Article  Google Scholar 

  8. Meng J, Nie W, Zhang K, Xu F, Ding X, Wang S, Qiu Y (2018) Enhancing electrochemical performance of graphene fiber-based supercapacitors by plasma treatment. ACS Appl Mater Interfaces 10(16):13652–13659. https://doi.org/10.1021/acsami.8b04438

    Article  CAS  Google Scholar 

  9. Wu J, Wang Z, Liu W, Wang L, Xu F (2019) Bioinspired superelastic electroconductive fiber for wearable electronics. ACS Appl Mater Interfaces 11(47):44735–44741. https://doi.org/10.1021/acsami.9b16051

    Article  CAS  Google Scholar 

  10. Qin Y, Peng Q, Ding Y, Lin Z, Wang C, Li Y, Xu F, Li J, Yuan Y, He X, Li Y (2015) Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano 9(9):8933–8941. https://doi.org/10.1021/acsnano.5b02781

    Article  CAS  Google Scholar 

  11. Cai G, Yang M, Pan J, Cheng D, Xia Z (2018) Large-Scale production of highly stretchable CNT/Cotton/Spandex composite yarn for wearable applications. ACS Appl Mater Interfaces 10(38):32726–32735. https://doi.org/10.1021/acsami.8b11885

    Article  CAS  Google Scholar 

  12. He X, Zhang F, Wang R, Liu W (2007) Preparation of a carbon nanotube/carbon fiber multi-scale reinforcement by grafting multi-walled carbon nanotubes onto the fibers. Carbon 45(13):2559–2563. https://doi.org/10.1016/j.carbon.2007.08.018

    Article  CAS  Google Scholar 

  13. Yuan Y, Yin W, Yang M, Xu F, Zhao X, Li J, Peng Q, He X, Du S, Li Y (2018) Lightweight, flexible and strong core-shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding. Carbon 130:59–68. https://doi.org/10.1016/j.carbon.2017.12.122

    Article  CAS  Google Scholar 

  14. Li X, Zhou C, Overman N, Ma XL, Canfield N, Kappagantula K, Schroth J, Grant G (2021) Copper carbon composite wire with a uniform carbon dispersion made by friction extrusion. J Manuf Process 65:397–406. https://doi.org/10.1016/j.jmapro.2021.03.055

    Article  Google Scholar 

  15. Liu W, Xu F, Zhu N, Wang S (2016) Mechanical and electrical properties of carbon nanotube / polydimethylsiloxane composites yarn. J Eng Fiber Fabr 210(3):594–599. https://doi.org/10.1002/pssa.201228549

    Article  CAS  Google Scholar 

  16. Wei L, Xu F, Sun L, Wei L, Qiu Y (2016) A novel flexible humidity switch material based on multi-walled carbon nanotube/polyvinyl alcohol composite yarn. Sens Actuat B Chem 230:528–535. https://doi.org/10.1016/j.snb.2016.02.108

    Article  CAS  Google Scholar 

  17. Wen YH, Tsou CH, de Guzman MR, Huang D, Yu YQ, Gao C, Zhang XM, Du J, Zheng YT, Zhu H, Wang ZH (2021) Antibacterial nanocomposite films of poly(vinyl alcohol) modified with zinc oxide-doped multiwalled carbon nanotubes as food packaging. Polym Bull. https://doi.org/10.1007/s00289-021-03666-1

    Article  Google Scholar 

  18. Mirzaeifar R, Qin Z, Buehler MJ (2015) Mesoscale mechanics of twisting carbon nanotube yarns. Nanoscale 7(12):5435–5445. https://doi.org/10.1039/c4nr06669c

    Article  CAS  Google Scholar 

  19. Shang Y, He X, Li Y, Zhang L, Li Z, Ji C, Shi E, Li P, Zhu K, Peng Q, Wang C, Zhang X, Wang R, Wei J, Wang K, Zhu H, Wu D, Cao A (2012) Super-stretchable spring-like carbon nanotube ropes. Adv Mater 24(21):2896–2900. https://doi.org/10.1002/adma.201200576

    Article  CAS  Google Scholar 

  20. Li W, Xu F, Wang Z, Wu J, Liu W, Qiu Y (2016) Effect of thermal treatments on structures and mechanical properties of aerogel-spun carbon nanotube fibers. Mater Lett 183:117–121. https://doi.org/10.1016/j.matlet.2016.07.034

    Article  CAS  Google Scholar 

  21. Wang Z, Wu J, Wei X, Saleemi S, Liu W, Li W, Marriam I, Xu F (2019) Bioinspired microstructure-reorganized behavior of carbon nanotube yarn induced by cyclic stretching training. J Mater Chem C 8(1):117–123. https://doi.org/10.1039/c9tc06056a

    Article  CAS  Google Scholar 

  22. Hu G, Zhang X, Liu X, Yu J, Ding B (2020) Strategies in precursors and post treatments to strengthen carbon nanofibers. Adv Fiber Mater 2(2):46–63. https://doi.org/10.1007/s42765-020-00035-x

    Article  Google Scholar 

  23. Shao Y, Xu F, Liu W, Zhou M, Li W, Hui D, Qiu Y (2017) Influence of cryogenic treatment on mechanical and interfacial properties of carbon nanotube fiber/bisphenol-F epoxy composite. Compos B Eng 125:195–202. https://doi.org/10.1016/j.compositesb.2017.05.077

    Article  CAS  Google Scholar 

  24. Misak HE, Asmatulu R, Omalley M, Jurak E, Mall S (2014) Functionalization of carbon nanotube yarn by acid treatment. Int J Smart Nano Mater 5(1):34–43. https://doi.org/10.1080/19475411.2014.896426

    Article  CAS  Google Scholar 

  25. Shao Y, Xu F, Marriam I, Liu W, Gao Z, Qiu Y (2019) Quasi-static and dynamic interfacial evaluations of plasma functionalized carbon nanotube fiber. Appl Surf Sci 465:795–801. https://doi.org/10.1016/j.apsusc.2018.09.258

    Article  CAS  Google Scholar 

  26. Kanakaraj SN, Hsieh YY, Adusei PK, Homan B, Fang Y, Zhang G, Mishra S, Gbordzoe S, Shanov V (2019) Nitrogen-doped CNT on CNT hybrid fiber as a current collector for high-performance Li-ion capacitor. Carbon 149:407–418. https://doi.org/10.1016/j.carbon.2019.04.032

    Article  CAS  Google Scholar 

  27. Aouraghe MA, Xu F, Liu X, Qiu Y (2019) Flexible, quickly responsive and highly efficient E-heating carbon nanotube film. Compos Sci Technol 183:107824. https://doi.org/10.1016/j.compscitech.2019.107824

    Article  CAS  Google Scholar 

  28. Xu F, Wei B, Liu W, Zhu H, Zhang Y, Qiu Y (2015) In-plane mechanical properties of carbon nanotube films fabricated by floating catalyst chemical vapor decomposition. J Mater Sci 50(24):8166–8174. https://doi.org/10.1007/s10853-015-9395-0

    Article  CAS  Google Scholar 

  29. Du S, Zhao W, Yuan L (2012) Absorption and structural property of ethanol/water mixture with carbon nanotubes. Chin J Chem Phys 25(4):487–493. https://doi.org/10.1088/1674-0068/25/04/487-493

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, K., Chen, W., Wang, J. et al. Dyeable electroconductive cotton wrapped CNT yarn for multifunctional textiles. J Mater Sci 57, 731–738 (2022). https://doi.org/10.1007/s10853-021-06597-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06597-4

Navigation