Skip to main content
Log in

Density functional theory study of electronic structure of defects and the role on the strain relaxation behavior of MoS2 bilayer structures

  • Computation
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recent capability of chemical vapor deposition (CVD) to grow large-area and high-quality monolayer and few-layered molybdenum disulfide (MoS2) structures renders intrinsic defects such as vacancies that alter the electronic properties of these structures. As a result, density functional theory (DFT) calculations are carried out to investigate the electronic structure of various types of CVD-grown vacancy defects and the role on the strain relaxation behavior of bilayer MoS2. DFT calculations suggest that additional charge states are activated in the gap between the valence band and conduction band for the atoms neighboring the defects in the layer and in the layer above the defects. In addition, the DFT results indicate that the presence of local defects lower energy barriers for strain relaxation of bilayer MoS2 attributed to sliding between the layers. These results demonstrate the modifications of the electronic properties of 2D structures and the strain due to the presence of defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Splendiani A et al (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275

    Article  Google Scholar 

  2. Butler SZ et al (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7:2898–2926

    Article  Google Scholar 

  3. Chhowalla M et al (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275

    Article  Google Scholar 

  4. Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805

    Article  Google Scholar 

  5. Ramasubramaniam A, Naveh D, Towe E (2011) Tunable band gaps in bilayer transition-metal dichalcogenides. Phys Rev B 84:205325

    Article  Google Scholar 

  6. Kou L et al (2012) Tuning magnetism and electronic phase transitions by strain and electric field in zigzag MoS2 nanoribbons. J Phys Chem Lett 3:2934–2941

    Article  Google Scholar 

  7. Johari P, Shenoy VB (2012) Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 6:5449–5456

    Article  Google Scholar 

  8. Dong L et al (2015) Edge effects on band gap energy in bilayer 2H-MoS2 under uniaxial strain. J Appl Phys 117:244303

    Article  Google Scholar 

  9. Shen T, Penumatcha AV, Appenzeller J (2016) Strain engineering for transition metal dichalcogenides based field effect transistors. ACS Nano 10:4712–4718

    Article  Google Scholar 

  10. Qiu H et al (2012) Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl Phys Lett 100:123104

    Article  Google Scholar 

  11. Wang H et al (2012) Integrated circuits based on bilayer MoS2 transistors. Nano Lett 12:4674–4680

    Article  Google Scholar 

  12. Desai SB et al (2016) MoS2 transistors with 1-nanometer gate lengths. Science 354:99–102

    Article  Google Scholar 

  13. Liu H, Wong SL, Chi D (2015) CVD growth of MoS2-based two-dimensional materials. Chem Vap Depos 21:241–259

    Article  Google Scholar 

  14. Shi Y, Li H, Li L-J (2015) Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem Soc Rev 44:2744–2756

    Article  Google Scholar 

  15. Zhou W et al (2013) Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett 13:2615–2622

    Article  Google Scholar 

  16. Enyashin AN, Bar-Sadan M, Houben L, Seifert G (2013) Line defects in molybdenum disulfide layers. J Phys Chem C 117:10842–10848

    Article  Google Scholar 

  17. Ghorbani-Asl M, Enyashin AN, Kuc A, Seifert G, Heine T (2013) Defect-induced conductivity anisotropy in MoS2 monolayers. Phys Rev B 88:245440

    Article  Google Scholar 

  18. Feng L-P, Su J, Chen S, Liu Z-T (2014) First-principles investigations on vacancy formation and electronic structures of monolayer MoS2. Mater Chem Phys 148:5–9

    Article  Google Scholar 

  19. Feng L-P, Su J, Liu Z-T (2014) Effect of vacancies on structural, electronic and optical properties of monolayer MoS2: a first-principles study. J Alloys Compd 613:122–127

    Article  Google Scholar 

  20. Gan Y, Zhao H (2014) Chirality effect of mechanical and electronic properties of monolayer MoS2 with vacancies. Phys Lett A 378:2910–2914

    Article  Google Scholar 

  21. Noh J-Y, Kim H, Kim Y-S (2014) Stability and electronic structures of native defects in single-layer MoS2. Phys Rev B 89:205417

    Article  Google Scholar 

  22. Santosh KC, Roberto CL, Rafik A, Robert MW, Kyeongjae C (2014) Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers. Nanotechnology 25:375703

    Article  Google Scholar 

  23. Yuan S, Roldán R, Katsnelson M, Guinea F (2014) Effect of point defects on the optical and transport properties of MoS2 and WS2. Phys Rev B 90:041402

    Article  Google Scholar 

  24. Krivosheeva AV et al (2015) Theoretical study of defect impact on two-dimensional MoS2. J Semicond 36:122002

    Article  Google Scholar 

  25. Haldar S, Vovusha H, Yadav MK, Eriksson O, Sanyal B (2015) Systematic study of structural, electronic, and optical properties of atomic-scale defects in the two-dimensional transition metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te). Phys Rev B 92:235408

    Article  Google Scholar 

  26. Komsa H-P, Krasheninnikov AV (2015) Native defects in bulk and monolayer MoS2 from first principles. Phys Rev B 91:125304

    Article  Google Scholar 

  27. Akdim B, Pachter R, Mou S (2016) Theoretical analysis of the combined effects of sulfur vacancies and analyte adsorption on the electronic properties of single-layer MoS2. Nanotechnology 27:185701

    Article  Google Scholar 

  28. González C, Biel B, Dappe Y (2016) Theoretical characterisation of point defects on a MoS2 monolayer by scanning tunnelling microscopy. Nanotechnology 27:105702

    Article  Google Scholar 

  29. Vancsó P et al (2016) The intrinsic defect structure of exfoliated MoS2 single layers revealed by Scanning Tunneling Microscopy. Sci Rep 6:29726

    Article  Google Scholar 

  30. Liu D, Guo Y, Fang L, Robertson J (2013) Sulfur vacancies in monolayer MoS2 and its electrical contacts. Appl Phys Lett 103:183113

    Article  Google Scholar 

  31. Tongay S et al (2013) Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci Rep 3:2657

    Article  Google Scholar 

  32. McDonnell S, Addou R, Buie C, Wallace RM, Hinkle CL (2014) Defect-dominated doping and contact resistance in MoS2. ACS Nano 8:2880–2888

    Article  Google Scholar 

  33. Nan H et al (2014) Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8:5738–5745

    Article  Google Scholar 

  34. Addou R, Colombo L, Wallace RM (2015) Surface defects on natural MoS2. ACS Appl Mater Interfaces 7:11921–11929

    Article  Google Scholar 

  35. Addou R et al (2015) Impurities and electronic property variations of natural MoS2 crystal surfaces. ACS Nano 9:9124–9133

    Article  Google Scholar 

  36. Parkin WM et al (2016) Raman shifts in electron-irradiated monolayer MoS2. ACS Nano 10:4134–4142

    Article  Google Scholar 

  37. Ye G et al (2016) Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett 16:1097–1103

    Article  Google Scholar 

  38. Mak KF et al (2013) Tightly bound trions in monolayer MoS2. Nat Mater 12:207–211

    Article  Google Scholar 

  39. Mignuzzi S et al (2015) Effect of disorder on Raman scattering of single-layer MoS2. Phys Rev B 91:195411

    Article  Google Scholar 

  40. Mishra R, Zhou W, Pennycook SJ, Pantelides ST, Idrobo J-C (2013) Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides. Phys Rev B 88:144409

    Article  Google Scholar 

  41. Ramasubramaniam A, Naveh D (2013) Mn-doped monolayer MoS 2: an atomically thin dilute magnetic semiconductor. Phys Rev B 87:195201

    Article  Google Scholar 

  42. Lin Z et al (2016) Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater 3:022002

    Article  Google Scholar 

  43. McCreary A et al (2016) Effects of uniaxial and biaxial strain on few-layered terrace structures of MoS2 grown by vapor transport. ACS Nano 10:3186–3197

    Article  Google Scholar 

  44. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  Google Scholar 

  45. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  Google Scholar 

  46. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  Google Scholar 

  47. Tkatchenko A, Scheffler M (2009) Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102:073005

    Article  Google Scholar 

  48. Karmakar D et al (2015) Optimal electron irradiation as a tool for functionalization of MoS2: theoretical and experimental investigation. J Appl Phys 117:135701

    Article  Google Scholar 

  49. Le D, Rawal TB, Rahman TS (2014) Single-layer MoS2 with sulfur vacancies: structure and catalytic application. J Phys Chem C 118:5346–5351

    Article  Google Scholar 

  50. Dong L, Dongare AM, Namburu RR, O’Regan TP, Dubey M (2014) Theoretical study on strain induced variations in electronic properties of 2H-MoS2 bilayer sheets. Appl Phys Lett 104:053107

    Article  Google Scholar 

  51. Levita G, Cavaleiro A, Molinari E, Polcar T, Righi M (2014) Sliding properties of MoS2 layers: load and interlayer orientation effects. J Phys Chem C 118:13809–13816

    Article  Google Scholar 

  52. Tao P, Guo H-H, Yang T, Zhang Z-D (2014) Stacking stability of MoS2 bilayer: an ab initio study. Chin Phys B 23:106801

    Article  Google Scholar 

  53. Cao B, Li T (2015) Interlayer electronic coupling in arbitrarily stacked MoS2 bilayers controlled by interlayer S–S interaction. J Phys Chem C 119:1247–1252

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash M. Dongare.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Dongare, A.M. Density functional theory study of electronic structure of defects and the role on the strain relaxation behavior of MoS2 bilayer structures. J Mater Sci 53, 9064–9075 (2018). https://doi.org/10.1007/s10853-018-2220-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2220-9

Keywords

Navigation