Skip to main content
Log in

Strain-Induced Energy Band Gap Opening in Two-Dimensional Bilayered Silicon Film

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work presents a theoretical study of the structural and electronic properties of bilayered silicon film (BiSF) under in-plane biaxial strain/stress using density functional theory (DFT). Atomic structures of the two-dimensional (2-D) silicon films are optimized by using both the local-density approximation (LDA) and generalized gradient approximation (GGA). In the absence of strain/stress, five buckled hexagonal honeycomb structures of the BiSF with triangular lattice have been obtained as local energy minima, and their structural stability has been verified. These structures present a Dirac-cone shaped energy band diagram with zero energy band gaps. Applying a tensile biaxial strain leads to a reduction of the buckling height. Atomically flat structures with zero buckling height have been observed when the AA-stacking structures are under a critical biaxial strain. Increase of the strain between 10.7% and 15.4% results in a band-gap opening with a maximum energy band gap opening of ∼0.17 eV, obtained when a 14.3% strain is applied. Energy band diagrams, electron transmission efficiency, and the charge transport property are calculated. Additionally, an asymmetric energetically favorable atomic structure of BiSF shows a non-zero band gap in the absence of strain/stress and a maximum band gap of 0.15 eV as a −1.71% compressive strain is applied. Both tensile and compressive strain/stress can lead to a band gap opening in the asymmetric structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  2. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  Google Scholar 

  3. A.K. Geim, Science 324, 1530 (2009).

    Article  Google Scholar 

  4. F. Schwierz, Nat. Nanotechnol. 5, 487 (2010).

    Article  Google Scholar 

  5. Y. Wu, K.A. Jenkins, A. Valdes-Garcia, D.B. Farmer, Y. Zhu, A.A. Bol, C. Dimitrakopoulos, W. Zhu, F. Xia, P. Avouris, and Y.-M. Lin, Nano Lett. 12, 3062 (2012).

  6. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  7. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011)

  8. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, and J. Lu, Nano Lett. 12, 113 (2012).

  9. A. O’Hare, F. Kusmartsev, and K. Kugel, Nano Lett. 12, 1045 (2012).

    Article  Google Scholar 

  10. M.E. Davila, L. Xian, S. Cahangirov, A. Rubio, and G. Le Lay, New J. Phys. 16, 095002 (2014).

    Article  Google Scholar 

  11. W.L. Li, Q. Chen, W.J. Tian, H. Bai, Y.F. Zhao, H.S. Hu, J. Li, H.J. Zhai, S.D. Li, and L.S. Wang, J. Am. Chem. Soc. 136, 12257 (2014).

    Article  Google Scholar 

  12. L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, and Y. Zhang, Nat. Nanotechnol. 9, 372 (2014).

    Article  Google Scholar 

  13. R. Fei and L. Yang, Nano Lett. 4, 2884 (2014).

    Article  Google Scholar 

  14. J. Qiao, X. Kong, Z. Hu, F. Yang, and W. Ji, Nat. Commun. 5, 4475 (2014).

    Google Scholar 

  15. F. Xia, H. Wang, and Y. Jia, Nat. Commun. 5, 4458 (2014).

    Google Scholar 

  16. G.G. Guzmán-Verri, and L.C. Lew Yan Voon, Phys. Rev. B 76, 075131 (2007).

  17. J. Yan, S. Gao, R. Stein, and G. Coard, Phys. Rev. B 91, 245403 (2015).

    Article  Google Scholar 

  18. N.D. Drummond, V. Zolyomi, and V.I. Fal’ko, Phys. Rev. B 85, 075423 (2012).

    Article  Google Scholar 

  19. A. Kumar and P.K. Ahluwalia, Phys. E 53, 233 (2013).

    Article  Google Scholar 

  20. J.L. Hoyt, B. Mohan, H.M. Nayfeh, S. Eguchi, I. Berg, G. Xia, T. Drake, E.A. Fitzgerald, and D.A. Antoniadis, IEDM Techn. Digest 23 (2002).

  21. M.L. Lee, E.A. Fitzgerald, M.T. Bulsara, M.T. Currie, and A. Lochtefeld, J. Appl. Phys. 97, 011101 (2005).

    Article  Google Scholar 

  22. S. Frégonèse, Y. Zhuang, and J.N. Burghartz, IEEE Trans. Electron Devices 54, 2321 (2007).

    Article  Google Scholar 

  23. S. Frégonèse, Y. Zhuang, and J.N. Burghartz, Solid-State Electron. 52, 919 (2008).

    Article  Google Scholar 

  24. S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, and S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009).

    Article  Google Scholar 

  25. F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dorr, Y. Mei, A. Rastelli, and O.G. Schmidt, Nano Lett. 10, 3453 (2010).

    Article  Google Scholar 

  26. S. Barraza-Lopez, A.A. Pacheco Sanjuan, Z. Wang, and M. Vanevic, Solid State Commun. 166, 70 (2013).

  27. V. M. Pereira, and A.H. Castro Neto, Phys. Rev. Lett. 103, 046801 (2009).

  28. C. Yang, Z. Yu, P. Lu, Y. Liu, H. Ye, and T. Gao, Comput. Mater. Sci. 95, 420 (2014).

    Article  Google Scholar 

  29. R. Qin, C. Wang, W. Zhu, and Y. Zhang, AIP Adv. 2, 022159 (2012).

    Article  Google Scholar 

  30. R. Qin, W. Zhu, Y. Zhang, and X. Deng, Nanoscale Res. Lett. 9, 521 (2014).

    Article  Google Scholar 

  31. H. Fu, J. Zhang, Z. Ding, H. Li, and S. Meng, Appl. Phys. Lett. 104, 131904 (2014).

    Article  Google Scholar 

  32. J.E. Padilha and R.B. Pontes, J. Phys. Chem. C 119, 3818 (2015).

    Article  Google Scholar 

  33. L.C. Lew Yan Voon, A. Lopez-Bezanilla, J. Wang, Y. Zhang, and M. Willatzen, New J. Phys. 17, 025004 (2015).

  34. T. Morishita, M. Spencer, S. Russo, I. Snook, and M. Mikami, Chem. Phys. Lett. 506, 221 (2011).

    Article  Google Scholar 

  35. C. Lian and J. Ni, AIP Adv. 3, 052102 (2013).

    Article  Google Scholar 

  36. R. Zhou, L.C. Lew Yan Voon, and Y. Zhuang, J. Appl. Phys. 114, 093711 (2013).

  37. Atomistix Toolkit version 12.8, QuantumWise A/S.

  38. M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).

    Article  Google Scholar 

  39. J.M. Soler, E. Artacho, J.D. Gale, A. Garca, J. Junquera, P. Ordejn, and D. Snchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).

    Google Scholar 

  40. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press, 1995), pp. 48–112.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Z., Zhou, R., Lew Yan Voon, L.C. et al. Strain-Induced Energy Band Gap Opening in Two-Dimensional Bilayered Silicon Film. J. Electron. Mater. 45, 5040–5047 (2016). https://doi.org/10.1007/s11664-016-4682-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4682-3

Keywords

Navigation