Skip to main content
Log in

Functionalization of magnetite–chitosan nanocomposite with molybdenum complexes: new efficient catalysts for epoxidation of olefins

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Functionalization of magnetite–chitosan core–shell-type nanocomposite with molybdenum–Schiff base complex through a simple step-by-step path results in the preparation of new catalysts for the epoxidation of olefins. The functionalized nanocomposites were characterized by Fourier-transform infrared spectroscopy, X-ray diffractometry, energy-dispersive X-ray spectroscopy, scanning electron microscopy and vibrating-sample magnetometry. Finally, their abilities to catalyze the epoxidation of olefins with tert-butyl hydroperoxide in chloroform were evaluated. It was found that the prepared functionalized nanocomposites have high catalytic activities for heterogeneous epoxidation of olefins with epoxide as the main product in all cases. In particular, when the cyclooctene was employed as olefin, complete conversion and selectivity for epoxycyclooctene and high turnover frequency were obtained at 60 °C. The functionalized nanocomposites can be easily separated magnetically for reusing, and no activity loss was observed in five consecutive runs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Caron S, Dugger RW, Ruggeri SG, Ragan JA, Ripin DHB (2006) Large-scale oxidations in the pharmaceutical industry. Chem Rev 106:2943–2989

    Article  Google Scholar 

  2. Habibi D, Faraji A, Arshadi M, Fierro J (2013) Characterization and catalytic activity of a novel Fe nano-catalyst as efficient heterogeneous catalyst for selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol. J Mol Catal A Chem 372:90–99

    Article  Google Scholar 

  3. Leus K, Vanhaelewyn G, Bogaerts T, Liu Y-Y, Esquivel D, Callens F, Marin GB, Van Speybroeck V, Vrielinck H, Van Der Voort V (2013) Ti-functionalized NH2-MIL-47: an effective and stable epoxidation catalyst. Catal Today 208:97–105

    Article  Google Scholar 

  4. Titinchi SJ, Abbo HS (2013) Salicylaldiminato chromium complex supported on chemically modified silica as highly active catalysts for the oxidation of cyclohexene. Catal Today 204:114–124

    Article  Google Scholar 

  5. Cozzi PG (2004) Metal–Salen Schiff base complexes in catalysis: practical aspects. Chem Soc Rev 33:410–421

    Article  Google Scholar 

  6. Sharma RK, Monga Y, Puri A, Gaba G (2013) Magnetite (Fe3O4) silica based organic–inorganic hybrid copper(ii) nanocatalyst: a platform for aerobic N-alkylation of amines. Green Chem 15:2800–2809

    Article  Google Scholar 

  7. Gawande MB, Shelke SN, Branco PS, Rathi A, Pandey RK (2012) Mixed metal MgO–ZrO2 nanoparticle-catalyzed O-tert-Boc protection of alcohols and phenols under solvent-free conditions. Appl Organomet Chem 26:395–400

    Article  Google Scholar 

  8. Pourjavadi A, Hosseini SH, Zohreh N, Bennett C (2014) Magnetic nanoparticles entrapped in the cross-linked poly (imidazole/imidazolium) immobilized Cu(II): an effective heterogeneous copper catalyst. RSC Adv 4:46418–46426

    Article  Google Scholar 

  9. Maksod E, Abd IH, Hegazy E, Kenawy S, Saleh TS (2010) An environmentally benign, highly efficient catalytic reduction of p-nitrophenol using a nano-sized nickel catalyst supported on silica-alumina. Adv Synth Catal 352:1169–1178

    Article  Google Scholar 

  10. Chang Y, Lv Y, Lu F, Zha F, Lei Z (2010) Efficient allylic oxidation of cyclohexene with oxygen catalyzed by chloromethylated polystyrene supported tridentate Schiff-base complexes. J Mol Catal A Chem 320:56–61

    Article  Google Scholar 

  11. Sharma S, Sinha S, Chand S (2012) Polymer anchored catalysts for oxidation of styrene using TBHP and molecular oxygen. Ind Eng Chem Res 51:8806–8814

    Article  Google Scholar 

  12. Li Z, Tang R, Liu G (2013) Immobilized into montmorillonite Mn(II) complexes of novel pyridine Schiff-base ligands and their catalytic reactivity in epoxidation of cyclohexene with O2. Catal Lett 143:592–599

    Article  Google Scholar 

  13. Rivallan M, Thomas S, Lepage M, Takagi N, Hirata H, Thibault-Starzyk F (2010) Evolution of platinum particles dispersed on zeolite upon oxidation catalysis and ageing. ChemCatChem 2:1599–1605

    Article  Google Scholar 

  14. Bansal VK, Thankachan PP, Prasad R (2010) Oxidation of benzyl alcohol and styrene using H2O2 catalyzed by tetraazamacrocycle complexes of Cu(II) and Ni(II) encapsulated in zeolite-Y. Appl Catal A 381:8–17

    Article  Google Scholar 

  15. Masteri-Farahani M, Kashef Z (2012) Synthesis and characterization of new magnetically recoverable molybdenum nanocatalyst for epoxidation of olefins. J Magn Magn Mater 324:1431–1434

    Article  Google Scholar 

  16. Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J-M (2011) Magnetically recoverable nanocatalysts. Chem Rev 111:3036–3075

    Article  Google Scholar 

  17. Sun J, Yu G, Liu L, Li Z, Kan Q, Huo Q, Guan J (2014) Core–shell structured Fe3O4@SiO2 supported cobalt(ii) or copper(ii) acetylacetonate complexes: magnetically recoverable nanocatalysts for aerobic epoxidation of styrene. Catal Sci Technol 4:1246–1252

    Article  Google Scholar 

  18. Karimi B, Mansouri F, Mirzaei HM (2015) Recent applications of magnetically recoverable nanocatalysts in C–C and C–X coupling reactions. ChemCatChem 7:1736–1789

    Article  Google Scholar 

  19. Li L, Chen D, Zhang Y, Deng Z, Ren X, Meng X, Tang F, Ren J, Zhang L (2007) Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system. Nanotechnology 18:405102

    Article  Google Scholar 

  20. Liu X, Hu Q, Fang Z, Zhang X, Zhang B (2008) Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir 25:3–8

    Article  Google Scholar 

  21. Zhou Y-T, Nie H-L, Branford-White C, He Z-Y, Zhu L-M (2009) Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid. J Colloid Interface Sci 330:29–37

    Article  Google Scholar 

  22. Sasaki T, Iwasaki N, Kohno K, Kishimoto M, Majima T, Nishimura SI, Minami A (2008) Magnetic nanoparticles for improving cell invasion in tissue engineering. J Biomed Mater Res Part A 86:969–978

    Article  Google Scholar 

  23. Hong S, Chang Y, Rhee I (2010) Chitosan-coated ferrite (Fe3O4) nanoparticles as a T2 contrast agent for magnetic resonance imaging. J Korean Phys Soc 56:868–873

    Article  Google Scholar 

  24. Kuo C-H, Liu Y-C, Chang C-MJ, Chen J-H, Chang C, Shieh C-J (2012) Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohyd Polym 87:2538–2545

    Article  Google Scholar 

  25. Xie W, Wang J (2012) Immobilized lipase on magnetic chitosan microspheres for transesterification of soybean oil. Biomass Bioenerg 36:373–380

    Article  Google Scholar 

  26. Fang H, Huang J, Ding L, Li M, Chen Z (2009) Preparation of magnetic chitosan nanoparticles and immobilization of laccase. J Wuhan Univ Technol Mater Sci Ed 24:42–47

    Article  Google Scholar 

  27. Moore GK, Roberts GA (1981) Reactions of chitosan: 3. Preparation and reactivity of Schiff’s base derivatives of chitosan. Int J Biol Macromol 3:337–340

    Article  Google Scholar 

  28. Muzzarelli R, Baldassarre V, Conti F, Ferrara P, Biagini G, Gazzanelli G, Vasi V (1988) Biological activity of chitosan: ultrastructural study. Biomaterials 9:247–252

    Article  Google Scholar 

  29. Binsu V, Nagarale R, Shahi VK, Ghosh P (2006) Studies on N-methylene phosphonic chitosan/poly(vinyl alcohol) composite proton-exchange membrane. React Funct Polym 66:1619–1629

    Article  Google Scholar 

  30. de Britto D, Assis OB (2007) A novel method for obtaining a quaternary salt of chitosan. Carbohydr Polym 69:305–310

    Article  Google Scholar 

  31. Hardy JJ, Hubert S, Macquarrie DJ, Wilson AJ (2004) Chitosan-based heterogeneous catalysts for Suzuki and Heck reactions. Green Chem 6:53–56

    Article  Google Scholar 

  32. Ma M, Zhang Y, Yu W, Shen H, Zhang H, Gu N (2003) Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids Surf A 212:219–226

    Article  Google Scholar 

  33. Topich J (1981) Ligand control of the redox properties of dioxomolybdenum(VI) coordination complexes. Inorg Chem 20:3704–3707

    Article  Google Scholar 

  34. Masteri-Farahani M, Tayyebi N (2011) A new magnetically recoverable nanocatalyst for epoxidation of olefins. J Mol Catal A Chem 348:83–87

    Article  Google Scholar 

  35. Cai X, Wang H, Zhang Q, Tong J, Lei Z (2014) Magnetically recyclable core–shell Fe3O4@chitosan-Schiff base complexes as efficient catalysts for aerobic oxidation of cyclohexene under mild conditions. J Mol Catal A Chem 383:217–224

    Article  Google Scholar 

  36. Saraiva MS, Nunes CD, Nunes TG, Calhorda MJ (2013) Mo(II) complexes of 8-aminoquinoline and their immobilization in MCM-41. Appl Catal A 455:172–182

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Kharazmi University (Grant Number: 174461).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Mohammadikish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadikish, M., Hashemi, S.H. Functionalization of magnetite–chitosan nanocomposite with molybdenum complexes: new efficient catalysts for epoxidation of olefins. J Mater Sci 54, 6164–6173 (2019). https://doi.org/10.1007/s10853-018-03286-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-03286-7

Navigation