Skip to main content

Advertisement

Log in

TiO2 crystalline structure and electrochemical performance in two-ply yarn CNT/TiO2 asymmetric supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Solid-state flexible energy storage devices play a crucial role in the development of wearable electronic textiles. In this study, we fabricated flexible asymmetric two-ply yarn supercapacitors from carbon nanotube yarns and surface-oxidized titanium filament. The crystalline structure of the TiO2 surface layer can be adjusted to amorphous, anatase and rutile states by altering the annealing temperature. The titanium filament with a rutile TiO2 surface layer produced at high annealing temperature showed far superior electrochemical performance over the filaments with amorphous and anatase TiO2 surface layers. The as-prepared asymmetric two-ply yarn supercapacitors in aqueous gel electrolyte can achieve a durable operating voltage up to 1.4 V, with a maximum energy density of 11.7 Wh kg−1 and a maximum power density of 2060 W kg−1. The asymmetric two-ply yarn supercapacitors exhibited excellent flexibility and cycling stability over 1200 cycles at straight, twisted and bent states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Rogers JA, Huang Y (2009) A curvy, stretchy future for electronics. Proc Natl Acad Sci 106:10875–10876

    Article  Google Scholar 

  2. Nyholm L, Nystrom G, Mihranyan A, Stromme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23:3751–3769

    Google Scholar 

  3. Hu L, Wu H, La Mantia F, Yang Y, Cui Y (2010) Thin, flexible secondary Li-ion paper batteries. ACS Nano 4:5843–5848

    Article  Google Scholar 

  4. El-Kady MF, Kaner RB (2013) Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun 4:1475

    Article  Google Scholar 

  5. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  Google Scholar 

  6. Miller JR, Simon P (2008) Materials science. Electrochemical capacitors for energy management. Science 321:651–652

    Article  Google Scholar 

  7. Simon P, Gogotsi Y, Dunn B (2014) Materials science. Where do batteries end and supercapacitors begin? Science 343:1210–1211

    Article  Google Scholar 

  8. Lu X, Yu M, Wang G, Tong Y, Li Y (2014) Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ Sci 7:2160–2181

    Article  Google Scholar 

  9. Le VT, Kim H, Ghosh A, Kim J, Chang J, Vu QA, Pham DT, Lee JH, Kim SW, Lee YH (2013) Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 7:5940–5947

    Article  Google Scholar 

  10. Li Y, Sheng K, Yuan W, Shi G (2012) A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide. Chem Commun 49:291–293

    Article  Google Scholar 

  11. Lee JA, Shin MK, Kim SH, Cho HU, Spinks GM, Wallace GG, Lima MD, Lepro X, Kozlov ME, Baughman RH, Kim SJ (2013) Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat Commun 4:1970

    Google Scholar 

  12. Ren J, Bai W, Guan G, Zhang Y, Peng H (2013) Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv Mater 25:5965–5970

    Article  Google Scholar 

  13. Yang Z, Deng J, Chen X, Ren J, Peng H (2013) A highly stretchable, fiber-shaped supercapacitor. Angew Chem Int Edit 52:13453–13457

    Article  Google Scholar 

  14. Wang K, Meng Q, Zhang Y, Wei Z, Miao M (2013) High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv Mater 25:1494–1498

    Article  Google Scholar 

  15. Zhang D, Miao M, Niu H, Wei Z (2014) Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles. ACS Nano 8:4571–4579

    Article  Google Scholar 

  16. Zhang D, Wu Y, Li T, Huang Y, Zhang A, Miao M (2015) High performance carbon nanotube yarn supercapacitors with a surface-oxidized copper current collector. ACS Appl Mater Interfaces 7:25835–25842

    Article  Google Scholar 

  17. Wang Q, Wu Y, Li T, Zhang D, Miao M, Zhang A (2016) High performance two-ply carbon nanocomposite yarn supercapacitors enhanced with a platinum filament and in situ polymerized polyaniline nanowires. J Mater Chem A 4:3828–3834

    Article  Google Scholar 

  18. Su F, Lv X, Miao M (2015) High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3O4 and NiO nanoparticles. Small 11:854–861

    Article  Google Scholar 

  19. Su F, Miao M (2014) Flexible, high performance two-ply yarn supercapacitors based on irradiated carbon nanotube yarn and PEDOT/PSS. Electrochim Acta 127:433–438

    Article  Google Scholar 

  20. Wang K, Wu H, Meng Y, Wei Z (2014) Conducting polymer nanowire arrays for high performance supercapacitors. Small 10:14–31

    Article  Google Scholar 

  21. Su F, Miao M (2014) Asymmetric carbon nanotube-MnO2 two-ply yarn supercapacitors for wearable electronics. Nanotechnology 25:13

    Google Scholar 

  22. Su F, Miao M, Niu H, Wei Z (2014) Gamma-irradiated carbon nanotube yarn as substrate for high-performance fiber supercapacitors. ACS Appl Mater Interfaces 6:2553–2560

    Article  Google Scholar 

  23. Su F, Lyu X, Liu C, Miao M (2016) Flexible two-ply yarn supercapacitors based on carbon nanotube/stainless steel core spun yarns decorated with Co3O4 nanoparticles and MnOx composites. Electrochim Acta 215:535–542

    Article  Google Scholar 

  24. Choi C, Sim HJ, Spinks GM, Lepró X, Baughman RH, Kim SJ (2016) Elastomeric and dynamic MnO2/CNT core–shell structure coiled yarn supercapacitor. Adv Energy Mater 6:1502119

    Article  Google Scholar 

  25. Sun J, Huang Y, Fu C, Wang Z, Huang Y, Zhu M, Zhi C, Hu H (2016) High-performance stretchable yarn supercapacitor based on PPy@ CNTs@urethane elastic fiber core spun yarn. Nano Energy 27:230–237

    Article  Google Scholar 

  26. Chuang C, Huang C, Teng H, Ting J (2012) Hydrothermally synthesized RuO2/Carbon nanofibers composites for use in high-rate supercapacitor electrodes. Compos Sci Technol 72:1524–1529

    Article  Google Scholar 

  27. Fang H, Liu M, Wang D, Ren X, Sun X (2013) Fabrication and supercapacitive properties of a thick electrode of carbon nanotube-RuO2 core-shell hybrid material with a high RuO2 loading. Nano Energy 2:1232–1241

    Article  Google Scholar 

  28. Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2009) Multisegmented Au-MnO2/carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications. J Phys Chem C 117:658–663

    Google Scholar 

  29. Li P, Wei J, Wang K, Zhu H, Yang Y, Shi E, Shen Q, Shang Y, Wu S, Yuan Q (2014) Core-double-shell, carbon nanotube@Polypyrrole@MnO2 sponge as freestanding, compressible supercapacitor electrode. ACS Appl Mater Interfaces 6:5228–5234

    Article  Google Scholar 

  30. Tang Q, Chen M, Yang C, Wang W, Bao H, Wang G (2015) Enhancing the energy density of asymmetric stretchable supercapacitor based on wrinkled CNT@MnO2 cathode and CNT@Polypyrrole anode. ACS Appl Mater Interfaces 7:15303–15313

    Article  Google Scholar 

  31. Bai Y, Du M, Chang J, Sun J, Gao L (2014) Supercapacitors with high capacitance based on reduced graphene oxide/carbon nanotubes/NiO composite electrodes. J Mater Chem A 2:3834–3840

    Article  Google Scholar 

  32. Yi H, Wang H, Jing Y, Peng T, Wang X (2015) Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life. J Power Source 285:281–290

    Article  Google Scholar 

  33. Wang Q, Wen Z, Li J (2006) A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode. Adv Funct Mater 16:2141–2146

    Article  Google Scholar 

  34. Su L, Zhang X, Yuan C, Bo G (2008) Symmetric self-hybrid supercapacitor consisting of multiwall carbon nanotubes and Co–Al layered double hydroxides. J Electrochem Soc 155:A110–A114

    Article  Google Scholar 

  35. Lu X, Wang G, Zhai T, Yu M, Gan J, Tong Y, Li Y (2012) Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett 12:1690–1696

    Article  Google Scholar 

  36. Cao X, Xing X, Zhang N, Gao H, Zhang M, Shang Y, Zhang X (2015) Quantitative investigation on the effect of hydrogenation on the performance of MnO2/H-TiO2 composite electrodes for supercapacitors. J Mater Chem A 3:3785–3793

    Article  Google Scholar 

  37. Huynh CP, Hawkins SC (2010) Understanding the synthesis of directly spinnable carbon nanotube forests. Carbon 48:1105–1115

    Article  Google Scholar 

  38. Miao M, McDonnell J, Vuckovic L, Hawkins SC (2010) Poisson’s ratio and porosity of carbon nanotube dry-spun yarns. Carbon 48:2802–2811

    Article  Google Scholar 

  39. Chen X, Liu L, Yu P, Mao S (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750

    Article  Google Scholar 

  40. Pei Z, Weng S, Liu P (2016) Enhanced photocatalytic activity by bulk trapping and spatial separation of charge carriers: a case study of defect and facet mediated TiO2. Appl Catal B Env 180:463–470

    Article  Google Scholar 

  41. Pei Z, Zhu M, Huang Y, Huang Y, Xue Q, Geng H, Zhi C (2016) Dramatically improved energy conversion and storage efficiencies by simultaneously enhancing charge transfer and creating active sites in MnOx/TiO2 nanotube composite electrodes. Nano Energy 20:254–263

    Article  Google Scholar 

  42. Chen X, Qiu L, Ren J, Guan G, Lin H, Zhang Z, Chen P, Wang Y, Peng H (2013) Novel electric double-layer capacitor with a coaxial fiber structure. Adv Mater 25:6436–6441

    Article  Google Scholar 

  43. Yang Z, Deng J, Chen X, Ren J, Peng H (2013) A highly stretchable, fiber-shaped supercapacitor. Angew Chem Int Edit 52:13453–13457

    Article  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the financial support of Hubei Province Natural Science Fund for Distinguished Young Scientists (2014CFA037) and the National Natural Science Foundation of China (21403305).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daohong Zhang or Menghe Miao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Wu, Y., Wang, Q. et al. TiO2 crystalline structure and electrochemical performance in two-ply yarn CNT/TiO2 asymmetric supercapacitors. J Mater Sci 52, 7733–7743 (2017). https://doi.org/10.1007/s10853-017-1033-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1033-6

Keywords

Navigation