Skip to main content

Advertisement

Log in

Wearable yarn supercapacitors coated with twisted PPy@GO nanosheets and PPy@PAN-GO nanofibres

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

There is an urgent need to develop flexible yarn-type supercapacitors with excellent electrochemical and mechanical properties for flexible energy storage devices in portable and wearable electronics. In this study, graphene oxide (GO) nanosheets and polyacrylonitrile (PAN)-GO nanofibres were coated on the surface of Ni-plated cotton yarn (NCY) via conjugate electrospinning technology, followed by chemical deposition of a polypyrrole (PPy) layer through in situ polymerisation of pyrrole, obtaining a flexible wearable PPy@GO/PAN-GO@Ni-coated cotton core-spun yarn (PGPG/NCY) electrode. The synergetic effect of NCY, GO/PAN-GO nanofibres, and PPy nanoparticles imparted a hierarchically porous structure, good conductivity, and high tensile strength (71.43 MPa) to this electrode. A flexible symmetric all-solid-state two-ply yarn supercapacitor based on PGPG/NCY electrodes was assembled. This yarn supercapacitor exhibited a high areal specific capacitance (28.34 mF cm−2) and high energy density (3.98 μWh cm−2), which are superior to those of other yarn supercapacitors. The capacitance retention of this yarn supercapacitor remained at 90.2% after 1000 cyclic voltammetry cycles and 100% at different bending angles; the yarn supercapacitor exhibited high electrochemical performance and cycling stability. Thus, the proposed high-performance yarn supercapacitor based on PGPG/NCY electrodes is promising and widely applicable in wearable devices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Lv Z, Li W, Yang L, Loh XJ, Chen X (2019) Custom-made electrochemical energy storage devices. ACS Energy Lett 4:606–614

    Article  CAS  Google Scholar 

  2. Liu W, Song MS, Kong B, Cui Y (2017) Flexible and stretchable energy storage: recent advances and future perspectives. Adv Mater 29:1603436

    Article  Google Scholar 

  3. Bao L, Li X (2012) Towards textile energy storage from cotton T-shirts. Adv Mater 24:3246–3252

    Article  CAS  Google Scholar 

  4. Xue Q, Sun J, Huang Y, Zhu M, Pei Z, Li H, Wang Y, Li N, Zhang H, Zhi C (2017) Recent progress on flexible and wearable supercapacitors. Small 13:1701827

    Article  Google Scholar 

  5. Ren J, Xu Q, Li YG (2018) Flexible fiber-shaped energy storage devices: Principles, progress, applications and challenges. Flex Printed Electron 3:013001

    Article  Google Scholar 

  6. Palchoudhury S, Ramasamy K, Gupta RK, Gupta A (2019) Flexible supercapacitors: a materials perspective. Fron Magn Mater 5:83

    Article  Google Scholar 

  7. Lu X, Yu M, Wang G, Tong Y, Li Y (2014) Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ Sci 7:2160–2181

    Article  Google Scholar 

  8. Yang Z, Deng J, Chen X, Ren J, Peng H (2013) A highly stretchable, fiber-shaped supercapacitor. Angew Chem Int Ed 125:13695–13699

    Article  Google Scholar 

  9. Wei Z, Lin S, Li Q, Song C, Wang F, Tao XM (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26:5310

    Article  Google Scholar 

  10. Tao C, Rui H, Peng H, Dai L (2015) High-performance, stretchable, wire-shaped supercapacitors. Angew Chem Int Ed 54:618–622

    Google Scholar 

  11. Sun J, Huang Y, Fu C, Wang Z, Huang Y, Zhu M, Zhi C, Hu H (2016) High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 27:230–237

    Article  CAS  Google Scholar 

  12. Shi P, Chen R, Li An, Jianing H, Zhou J (2018) Holey nickel hydroxide nanosheets for wearable solid-state fiber-supercapacitors. Nanoscale 10:5442–5448

    Article  CAS  Google Scholar 

  13. Rui SC, Guedes A, Pereira AM, Pereira C (2020) Fabrication of all-solid-state textile supercapacitors based on industrial-grade multi-walled carbon nanotubes for enhanced energy storage. J Mater Sci 55:10121–10141

    Article  Google Scholar 

  14. Ma Y, Wang Q, Liang X, Zhang D, Miao M (2018) Wearable supercapacitors based on conductive cotton yarns. J Mater Sci 53:14586–14597

    Article  CAS  Google Scholar 

  15. Li T, Wu Y, Wang Q, Zhang D, Zhang A, Miao M (2017) TiO2 crystalline structure and electrochemical performance in two-ply yarn CNT/TiO2 asymmetric supercapacitors. J Mater Sci 52:7733–7743

    Article  CAS  Google Scholar 

  16. Amiri A, Bashandeh K, Naraghi M, Polycarpou AA (2020) All-solid-state supercapacitors based on yarns of Co3O4-anchored porous carbon nanofibers. Chem Eng J 409:128124

    Article  Google Scholar 

  17. Abdah M, Azman N, Kulandaivalu S, Sulaiman Y (2019) Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater Des 186:108199

    Article  Google Scholar 

  18. Xuli C, Longbin Q, Jing R, Guozhen G, Huijuan L (2013) Novel electric double-layer capacitor with a coaxial fiber structure. Adv Mater 25:6436–6441

    Article  Google Scholar 

  19. Meng Y, Zhao Y, Hu C, Cheng H, Hu Y, Zhang Z, Shi G, Qu L (2013) All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 25:2326–2331

    Article  CAS  Google Scholar 

  20. Raj CJ, Manikandan R, Cho WJ, Yu KH, Kim BC (2020) High-performance flexible and wearable planar supercapacitor of manganese dioxide nanoflowers on carbon fiber cloth. Ceram Int 46:21736–21743

    Article  CAS  Google Scholar 

  21. Yang F, Xu M, Bao SJ, Sun QQ (2014) MnO2-assisted fabrication of PANI/MWCNT composite and its application as a supercapacitor. RSC Adv 4:33569–33573

    Article  CAS  Google Scholar 

  22. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614

    Article  CAS  Google Scholar 

  23. Wang Q, Wang X, Xu J, Ouyang X, Hou X, Chen D, Wang R, Shen G (2014) Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 8:44–51

    Article  CAS  Google Scholar 

  24. Guangxi H, Ye Z, Lie W, Peng S, Huisheng P (2017) Fiber-based MnO2/carbon nanotube/polyimide asymmetric supercapacitor. Carbon 125:595–604

    Article  Google Scholar 

  25. Lu X, Wang C, Favier F, Pinna N (2017) Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance. Adv Energy Mater 7:1601301

    Article  Google Scholar 

  26. Liu Y, Hao M, Chen Z, Liu L, Liu Y, Yang W, Ramakrishna S (2020) A review on recent advances in application of electrospun nanofiber materials as biosensors. Curr Opin Biomed Eng 13:174–189

    Article  CAS  Google Scholar 

  27. Chen S, He S, Hou H (2013) Electrospinning Technology for Applications in Supercapacitors. Curr Org Chem 17:1402–1410

    Article  CAS  Google Scholar 

  28. Li P, Ma X, Liu F, Zhao YL, Yang J (2020) Synthesis of highly ordered mesoporous carbons nanofiber web based on electrospinning strategy for supercapacitor. Microporous Mesoporous Mater 305:110283

    Article  CAS  Google Scholar 

  29. Yuan L, Yl E, Jm C, Bda B, Jw E, Yz C, Xx C, Gang XC (2020) Construction of hierarchical structure of Co3O4 electrode based on electrospinning technique for supercapacitor. J Alloys Compd 853:157271

    Google Scholar 

  30. Wang HT, Liu YN, Kang XH, Wang YF, Yang SY, Bian SW, Quan Z (2018) Flexible hybrid yarn-shaped supercapacitors based on porous nickel cobalt sulfide nanosheet array layers on gold metalized cotton yarns. J Colloid Interface Sci 532:527–535

    Article  CAS  Google Scholar 

  31. Jin C, Wang HT, Liu YN, Kang XH, Liu P, Zhang JN, Jin LN, Bian SW, Zhu Q (2018) High-performance yarn electrode materials enhanced by surface modifications of cotton fibers with graphene sheets and polyaniline nanowire arrays for all-solid-state supercapacitors. Electrochim Acta 270:205–214

    Article  CAS  Google Scholar 

  32. Hao B, Deng Z, Bi S, Ran J, Tang X (2020) In situ polymerization of pyrrole on CNT/cotton multifunctional composite yarn for supercapacitors. Ionics 27:279–288

    Article  Google Scholar 

  33. Wijesena RN, Silva D, Nalin KM, Tissera ND, Perera RJ, Amaratunge GAJ (2015) Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating. Appl Surf Sci 324:455–463

    Article  Google Scholar 

  34. Brousse K, Huang P, Pinaud S, Respaud M, Daffos B, Chaudret B, Lethien C, Taberna P-L, Simon P (2016) Electrochemical behavior of high performance on-chip porous carbon films for micro-supercapacitors applications in organic electrolytes. J Power Sources 328:520–526

    Article  CAS  Google Scholar 

  35. Le VT, Kim H, Ghosh A, Kim J, Chang J, Vu QA, Pham DT, Lee JH, Kim SW, Lee YH (2013) Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 7:5940–5947

    Article  CAS  Google Scholar 

  36. Wang G, Wang H, Lu X, Ling Y, Yu M, Zhai T, Tong Y, Li Y (2014) Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv Mater 26:2676–2682

    Article  CAS  Google Scholar 

  37. Wei C, Xu Q, Chen Z, Rao W, Fan L, Yuan Y, Bai Z, Xu J (2017) An all-solid-state yarn supercapacitor using cotton yarn electrodes coated with polypyrrole nanotubes. Carbohydr Polym 169:50–57

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (No. U2004178 and No. 51803244), the Key Scientific Research Project in Colleges and Universities of Henan Province of China (No. 21zx001), and the Fundamental Research Funds of Zhongyuan University of Technology of Henan Province of China (No. K2020QN001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanwan Li, Yangyang Xu or Jianxin He.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1018 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Li, W., Li, F. et al. Wearable yarn supercapacitors coated with twisted PPy@GO nanosheets and PPy@PAN-GO nanofibres. J Mater Sci 56, 18147–18161 (2021). https://doi.org/10.1007/s10853-021-06500-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06500-1

Navigation