Skip to main content
Log in

Reactive molecular dynamics: an effective tool for modelling the sol–gel synthesis of bioglasses

  • In Honor of Larry Hench
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Unlike melt-derived bioactive glasses, obtaining realistic models of sol–gel glasses represents a significant challenge for current simulation methods, due to the need to accurately reproduce the dynamical evolution in an aqueous solution starting from the precursors. Here we discuss the advantages of using reactive molecular dynamics in this context, by reviewing recent studies where the approach has been applied to examine the initial transformation of realistic precursor solutions. Moreover, we discuss additional results illustrating the gradual formation of clusters and rings in the presence of calcium, which corroborate our recent analysis and further highlight the importance of reactive molecular dynamics for guiding future computational studies of sol–gel biomedical glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Hench LL (1998) Bioceramics. J Am Ceram Soc 81:1705–1728

    Article  Google Scholar 

  2. Jones JR (2013) Review of bioactive glass: from hench to hybrids. Acta Biomater 9:4457–4486

    Article  Google Scholar 

  3. Yu BB, Turdean-Ionescu CA, Martin RA, Newport RJ, Hanna JV, Smith ME et al (2012) Effect of calcium source on structure and properties of sol–gel derived bioactive glasses. Langmuir 28:17465–17476

    Article  Google Scholar 

  4. Yeon J, van Duin AC (2015) ReaxFF molecular dynamics simulations of hydroxylation kinetics for amorphous and nano-silica structure, and its relations with atomic strain energy. J Phys Chem C 120:305–317

    Article  Google Scholar 

  5. Rimsza J, Deng L, Du J (2016) Molecular dynamics simulations of nanoporous organosilicate glasses using reactive force field (ReaxFF). J Non Cryst Solids 431:103–111

    Article  Google Scholar 

  6. Deetz JD, Faller R (2015) Reactive modeling of the initial stages of alkoxysilane polycondensation: effects of precursor molecule structure and solution composition. Soft Matter 11:6780–6789

    Article  Google Scholar 

  7. Chenoweth K, Cheung S, Van Duin AC, Goddard WA, Kober EM (2005) Simulations on the thermal decomposition of a poly (dimethylsiloxane) polymer using the ReaxFF reactive force field. J Am Chem Soc 127:7192–7202

    Article  Google Scholar 

  8. Moqadam M, Riccardi E, Trinh TT, Åstrand P-O, van Erp TS (2015) A test on reactive force fields for the study of silica dimerization reactions. J Chem Phys 143:184113

    Article  Google Scholar 

  9. Malani A, Auerbach SM, Monson PA (2011) Monte Carlo simulations of silica polymerization and network formation. J Phys Chem C 115:15988–16000

    Article  Google Scholar 

  10. Garofalini SH, Martin G (1994) Molecular simulations of the polymerization of silicic acid molecules and network formation. J Phys Chem 98:1311–1316

    Article  Google Scholar 

  11. Rao NZ, Gelb LD (2004) Molecular dynamics simulations of the polymerization of aqueous silicic acid and analysis of the effects of concentration on silica polymorph distributions, growth mechanisms, and reaction kinetics. J Phys Chem B 108:12418–12428

    Article  Google Scholar 

  12. Bhattacharya S, Kieffer J (2008) Molecular dynamics simulation study of growth regimes during polycondensation of silicic acid: from silica nanoparticles to porous gels. J Phys Chem C 112:1764–1771

    Article  Google Scholar 

  13. Valliant EM, Turdean-Ionescu CA, Hanna JV, Smith ME, Jones JR (2012) Role of pH and temperature on silica network formation and calcium incorporation into sol–gel derived bioactive glasses. J Mater Chem 22:1613–1619

    Article  Google Scholar 

  14. Martin RA, Yue S, Hanna JV, Lee PD, Newport RJ, Smith ME et al (2012) Characterizing the hierarchical structures of bioactive sol–gel silicate glass and hybrid scaffolds for bone regeneration. Phil Trans R Soc A 370:1422–1443

    Article  Google Scholar 

  15. Trinh TT, Jansen AP, van Santen RA, Meijer EJ (2009) Role of water in silica oligomerization. J Phys Chem C 113:2647–2652

    Article  Google Scholar 

  16. Tilocca A (2014) Current challenges in atomistic simulations of glasses for biomedical applications. Phys Chem Chem Phys 16:3874–3880

    Article  Google Scholar 

  17. Yu Y, Wang B, Wang M, Sant G, Bauchy M (2016) Revisiting silica with ReaxFF: towards improved predictions of glass structure and properties via reactive molecular dynamics. J Non Cryst Solids 443:148–154

    Article  Google Scholar 

  18. Mahadevan TS, Garofalini SH (2008) Dissociative chemisorption of water onto silica surfaces and formation of hydronium ions. J Phys Chem C 112:1507–1515

    Article  Google Scholar 

  19. Brenner DW (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42:9458

    Article  Google Scholar 

  20. Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472–6486

    Article  Google Scholar 

  21. Van Duin AC, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105:9396–9409

    Article  Google Scholar 

  22. Tilocca A, Cormack AN (2011) The initial stages of bioglass dissolution: a Car–Parrinello molecular-dynamics study of the glass–water interface. Proc R Soc A 467:2102–2111

    Article  Google Scholar 

  23. Car R, Parrinello M (1985) Unified approach for molecular-dynamics and density-functional theory. Phys Rev Lett 55:2471–2474

    Article  Google Scholar 

  24. Christie JK, Pedone A, Menziani MC, Tilocca A (2011) Fluorine environment in bioactive glasses: ab initio molecular dynamics simulations. J Phys Chem B 115:2038–2045

    Article  Google Scholar 

  25. Tilocca A (2007) Structure and dynamics of bioactive phosphosilicate glasses and melts from ab initio molecular dynamics simulations. Phys Rev B 76:224202

    Article  Google Scholar 

  26. Tilocca A (2010) Models of structure, dynamics and reactivity of bioglasses: a review. J Mater Chem 20:6848

    Article  Google Scholar 

  27. Tilocca A (2008) Short- and medium-range structure of multicomponent bioactive glasses and melts: an assessment of the performances of shell-model and rigid-ion potentials. J Chem Phys 129:084504

    Article  Google Scholar 

  28. Rappe AK, Goddard WA III (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95:3358–3363

    Article  Google Scholar 

  29. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  Google Scholar 

  30. Van Duin AC, Strachan A, Stewman S, Zhang Q, Xu X, Goddard WA (2003) ReaxFFSiO reactive force field for silicon and silicon oxide systems. J Phys Chem A 107:3803–3811

    Article  Google Scholar 

  31. Senftle TP, Hong S, Islam MM, Kylasa SB, Zheng Y, Shin YK et al (2016) The ReaxFF reactive force-field: development, applications and future directions. npj Comput Mater 2:15011

    Article  Google Scholar 

  32. van Duin AC, Baas JM, van de Graaf B (1994) Delft molecular mechanics: a new approach to hydrocarbon force fields. Inclusion of a geometry-dependent charge calculation. J Chem Soc Faraday Trans 90:2881–2895

    Article  Google Scholar 

  33. Iype E, Hütter M, Jansen A, Nedea SV, Rindt C (2013) Parameterization of a reactive force field using a Monte Carlo algorithm. J Comput Chem 34:1143–1154

    Article  Google Scholar 

  34. Jaramillo-Botero A, Naserifar S, Goddard WA III (2014) General multiobjective force field optimization framework, with application to reactive force fields for silicon carbide. J Chem Theory Comput 10:1426–1439

    Article  Google Scholar 

  35. Jones JR (2012) Sol–gel derived glasses for medicine. In: Jones J, Clare A (eds) Bio-glasses. Wiley, New York, pp 29–44

    Chapter  Google Scholar 

  36. Chowdhury SC, Haque BZG, Gillespie JW (2016) Molecular dynamics simulations of the structure and mechanical properties of silica glass using ReaxFF. J Mater Sci 51:10139–10159. doi:10.1007/s10853-016-0242-8

    Article  Google Scholar 

  37. Fogarty JC, Aktulga HM, Grama AY, Van Duin AC, Pandit SA (2010) A reactive molecular dynamics simulation of the silica–water interface. J Chem Phys 132:174704

    Article  Google Scholar 

  38. Larsson HR, Duin AC, Hartke B (2013) Global optimization of parameters in the reactive force field ReaxFF for SiOH. J Comput Chem 34:2178–2189

    Article  Google Scholar 

  39. Pitman MC, Van Duin AC (2012) Dynamics of confined reactive water in smectite clay–zeolite composites. J Am Chem Soc 134:3042–3053

    Article  Google Scholar 

  40. Deetz JD, Faller R (2014) Parallel optimization of a reactive force field for polycondensation of alkoxysilanes. J Phys Chem B 118:10966–10978

    Article  Google Scholar 

  41. Soper A (2007) Joint structure refinement of x-ray and neutron diffraction data on disordered materials: application to liquid water. J Phys Condens Matter 19:335206

    Article  Google Scholar 

  42. Côté AS, Cormack AN, Tilocca A (2016) Influence of calcium on the initial stages of the sol–gel synthesis of bioactive glasses. J Phys Chem B 120:11773–11780

    Article  Google Scholar 

  43. Cowen BJ, El-Genk MS (2016) Bond-order reactive force fields for molecular dynamics simulations of crystalline silica. Comput Mater Sci 111:269–276

    Article  Google Scholar 

  44. Le Roux S, Jund P (2010) Ring statistics analysis of topological networks: new approach and application to amorphous GeS2 and SiO2 systems. Comput Mater Sci 49:70–83

    Article  Google Scholar 

  45. Lin S, Ionescu C, Pike KJ, Smith ME, Jones JR (2009) Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass. J Mater Chem 19:1276–1282

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Royal Society (University Research Fellowship) and EPSRC (Standard Grant EP/M004201/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Tilocca.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Côté, A.S., Cormack, A.N. & Tilocca, A. Reactive molecular dynamics: an effective tool for modelling the sol–gel synthesis of bioglasses. J Mater Sci 52, 9006–9013 (2017). https://doi.org/10.1007/s10853-017-1009-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1009-6

Keywords

Navigation