Skip to main content

Rationalizing the Biodegradation of Glasses for Biomedical Applications Through Classical and Ab-initio Simulations

  • Chapter
  • First Online:
Molecular Dynamics Simulations of Disordered Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 215))

Abstract

The gradual dissolution of a glass in a living host determines the rate at which processes leading to tissue regeneration can occur, which is of crucial importance for the success of biomedical implants and scaffolds for tissue engineering based on the glass. In-situ radiotherapy applications are also affected—in an opposite way—by the rate at which the glass vector used to deliver radioisotopes will degrade in the bloodstream. This chapter illustrates how a combination of classical and ab-initio simulations techniques, mainly centred on Molecular Dynamics, can shed new light into structural and dynamical features that control the biodegradation of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.R. Jones, Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013)

    Google Scholar 

  2. L.L. Hench, Bioceramics. J. Am. Ceram. Soc. 81(7), 1705–1728 (1998)

    Google Scholar 

  3. L.L. Hench et al., Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 2(6), 117–141 (1971)

    Google Scholar 

  4. M. Vallet-Regí, Ceramics for medical applications. J. Chem. Soc. Dalton Trans. 2, 97–108 (2001)

    Google Scholar 

  5. H. Oonishi et al., Quantitative comparison of bone growth behavior in granules of bioglass \(\textregistered {R}\), A-W glass-ceramic, and hydroxyapatite. J. Biomed. Mater. Res. 51(1), 37–46 (2000)

    Google Scholar 

  6. L.L. Hench, Bioceramics-from concept to clinic. J. Am. Ceram. Soc. 74(7), 1487–1510 (1991)

    Google Scholar 

  7. J.R. Jones, P. Sepulveda, L.L. Hench, Dose-dependent behavior of bioactive glass dissolution. J. Biomed. Mater. Res. 58(6), 720–726 (2001)

    Google Scholar 

  8. I.D. Xynos et al., Gene-expression profiling of human osteoblasts following treatment with the ionic products of bioglass \(\textregistered {R}\) 45S5 dissolution. J. Biomed. Mater. Res. 55(2), 151–157 (2001)

    Google Scholar 

  9. L.L. Hench, J.M. Polak, Third-generation biomedical materials. Science 295(5557), 1014–1017 (2002)

    Google Scholar 

  10. R.A. Martin et al., Characterizing the hierarchical structures of bioactive sol-gel silicate glass and hybrid scaffolds for bone regeneration. Phil. Trans. R. Soc. A 2012(370), 1422–1443 (1963)

    Google Scholar 

  11. M. Ogino, F. Ohuchi, L.L. Hench, Compositional dependence of the formation of calcium-phosphate films on bioglass. J. Biomed. Mater. Res. 14(1), 55–64 (1980)

    Google Scholar 

  12. P. Sepulveda, J.R. Jones, L.L. Hench, In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J. Biomed. Mater. Res. A 61(2), 301–311 (2002)

    Google Scholar 

  13. J.C. Knowles, Phosphate based glasses for biomedical applications. J. Mater. Chem. 13(10), 2395–2401 (2003)

    Google Scholar 

  14. A. Hoppe, N.S. Güldal, A.R. Boccaccini, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32(11), 2757–2774 (2011)

    Google Scholar 

  15. A. Tilocca, Structural models of bioactive glasses from molecular dynamics simulations. Proc. R. Soc. A 465(2104), 1003–1027 (2009)

    Google Scholar 

  16. A.E. Clark, C.G. Pantano, L.L. Hench, Auger spectroscopic analysis of bioglass corrosion films. J. Am. Ceram. Soc. 59(1–2), 37–39 (1976)

    Google Scholar 

  17. B.C. Bunker, Molecular mechanisms for corrosion of silica and silicate glasses. J. Non-Cryst. Solids 179, 300–308 (1994)

    Google Scholar 

  18. C. Cailleteau et al., Insight into silicate-glass corrosion mechanisms. Nat. Mater 7(12), 978–983 (2008)

    Google Scholar 

  19. A. Tilocca, Models of structure, dynamics and reactivity of bioglasses: a review. J. Mater. Chem. 20(33), 6848 (2010)

    Google Scholar 

  20. Y.B. Wang et al., Atomistic insight into viscosity and density of silicate melts under pressure. Nat. Commun. 5 (2014)

    Google Scholar 

  21. K. Vollmayr, W. Kob, K. Binder, Cooling-rate effects in amorphous silica: a computer-simulation study. Phys. Rev. B 54(22), 15808–15827 (1996)

    Google Scholar 

  22. C.D. Huang, A.N. Cormack, Structural differences and phase-separation in alkali silicate-glasses. J. Chem. Phys. 95(5), 3634–3642 (1991)

    Google Scholar 

  23. C. Massobrio, A. Pasquarello, Short and intermediate range order in amorphous GeSe\(_2\). Phys. Rev. B 77(14), 144207 (2008)

    Google Scholar 

  24. R. Car, M. Parrinello, Unified approach for molecular-dynamics and density-functional theory. Phys. Rev. Lett. 55(22), 2471–2474 (1985)

    Google Scholar 

  25. A. Tilocca, Cooling rate and size effects on the medium-range structure of multicomponent oxide glasses simulated by molecular dynamics. J. Chem. Phys. 139(11), 114501 (2013)

    Google Scholar 

  26. A. Tilocca, Sodium migration pathways in multicomponent silicate glasses: Car-Parrinello molecular dynamics simulations. J. Chem. Phys. 133(1), 014701–014710 (2010)

    Google Scholar 

  27. J.H. Los et al., First-principles study of the amorphous In3SbTe2 phase change compound. Phys. Rev. B 88(17), 174203 (2013)

    Google Scholar 

  28. K. Nishio, T. Miyazaki, H. Nakamura, Universal medium-range order of amorphous metal oxides. Phys. Rev. Lett. 111(15), 155502 (2013)

    Google Scholar 

  29. G. Spiekermann et al., Vibrational properties of silica species in MgO–SiO\(_2\) glasses obtained from ab initio molecular dynamics. Chem. Geol. 346, 22–33 (2013)

    Google Scholar 

  30. A. Aliano, A. Catellani, G. Cicero, Characterization of amorphous In\(_2\)O\(_3\): an ab initio molecular dynamics study. Appl. Phys. Lett. 99(21), 211913 (2011)

    Google Scholar 

  31. A.J. Parsons et al., Neutron scattering and ab initio molecular dynamics study of cross-linking in biomedical phosphate glasses. J. Phys. Condens. Matter 22(48), 485403 (2010)

    Google Scholar 

  32. A. Tilocca, Structure and dynamics of bioactive phosphosilicate glasses and melts from ab initio molecular dynamics simulations. Phys. Rev. B 76(22), 224202 (2007)

    Google Scholar 

  33. J.K. Christie et al., Fluorine environment in bioactive glasses: ab initio molecular dynamics simulations. J. Phys. Chem. B 115(9), 2038–2045 (2011)

    Google Scholar 

  34. L. Giacomazzi, C. Massobrio, A. Pasquarello, Vibrational properties of vitreous GeSe\(_2\) with the Becke-Lee-Yang-Parr density functional. J. Phys. Condens. Matter 23(29), 295407 (2011)

    Google Scholar 

  35. L.P. Huang, J. Kieffer, Thermomechanical anomalies and polyamorphism in B\(_2\)O\(_3\) glass: a molecular dynamics simulation study. Phys. Rev. B 74(22), 224107 (2006)

    Google Scholar 

  36. Q.J. Zheng et al., Structure of boroaluminosilicate glasses: impact of Al\(_2\)O\(_3\)/SiO\(_2\) ratio on the structural role of sodium. Phys. Rev. B 86(5), 054203 (2012)

    Google Scholar 

  37. T. Schaller et al., Fluorine in silicate glasses: a multinuclear nuclear magnetic resonance study. Geochimica et Cosmochimica Acta 56(2), 701–707 (1992)

    Google Scholar 

  38. D.S. Brauer et al., Structure of fluoride-containing bioactive glasses. J. Mater. Chem. 19(31), 5629–5636 (2009)

    Google Scholar 

  39. G. Lusvardi et al., Elucidation of the structural role of fluorine in potentially bioactive glasses by experimental and computational investigation. J. Phys. Chem. B 112(40), 12730–12739 (2008)

    Google Scholar 

  40. F. Fayon et al., Evidence of nanometric-sized phosphate clusters in bioactive glasses as revealed by solid-state \(^{31}\)P NMR. J. Phys. Chem. C 117, 2283–2288 (2013)

    Google Scholar 

  41. M.D. O’Donnell et al., The effect of phosphate content on the bioactivity of soda-lime-phosphosilicate glasses. J. Mater. Sci. Mater. Med. 20(8), 1611–1618 (2009)

    Google Scholar 

  42. K. Fujikura et al., Influence of strontium substitution on structure and crystallisation of bioglass \(\textregistered {R}\) 45S5. J. Mater. Chem. 22(15) 7395–7402 (2012)

    Google Scholar 

  43. A. Pedone et al., Role of magnesium in soda-lime glasses: insight into structural, transport, and mechanical properties through computer simulations. J. Phys. Chem. C 112(29), 11034–11041 (2008)

    Google Scholar 

  44. Y. Xiang, J. Du, Effect of strontium substitution on the structure of 45S5 bioglasses. Chem. Mater. 23(11), 2703–2717 (2011)

    Google Scholar 

  45. A. Tilocca, Short- and medium-range structure of multicomponent bioactive glasses and melts: an assessment of the performances of shell-model and rigid-ion potentials. J. Chem. Phys. 129(8), 084504 (2008)

    Google Scholar 

  46. Ö.H. Andersson, K.H. Karlsson, On the bioactivity of silicate glass. J. Non-Cryst. Solids 129(1–3), 145–151 (1991)

    Google Scholar 

  47. A.E. Clark, C.G. Pantano, L.L. Hench, Auger spectroscopic analysis of bioglass corrosion films. J. Am. Ceram. Soc. 59(1–2), 37–39 (1976)

    Google Scholar 

  48. A.N. Cormack, J. Du, T.R. Zeitler, Alkali ion migration mechanisms in silicate glasses probed by molecular dynamics simulations. Phys. Chem. Chem. Phys. 4(14), 3193–3197 (2002)

    Google Scholar 

  49. C. Bonhomme et al., Sr-87 solid-state NMR as a structurally sensitive tool for the investigation of materials: antiosteoporotic pharmaceuticals and bioactive glasses. J. Am. Chem. Soc. 134(30), 12611–12628 (2012)

    Google Scholar 

  50. R.N. Mead, G. Mountjoy, Modeling the local atomic structure of bioactive sol-gel-derived calcium silicates. Chem. Mater. 18(17), 3956–3964 (2006)

    Google Scholar 

  51. A. Tilocca, A.N. Cormack, Structural effects of phosphorus inclusion in bioactive silicate glasses. J. Phys. Chem. B 111(51), 14256–14264 (2007)

    Google Scholar 

  52. A. Pedone, E. Gambuzzi, M.C. Menziani, Unambiguous description of the oxygen environment in multicomponent aluminosilicate glasses from O-17 solid state NMR computational spectroscopy. J. Phys. Chem. C 116(27), 14599–14609 (2012)

    Google Scholar 

  53. M. Corno et al., B3LYP simulation of the full vibrational spectrum of 45S5 bioactive silicate glass compared to v-silica. Chem. Mater. 20(17), 5610–5621 (2008)

    Google Scholar 

  54. E. Berardo et al., DFT modeling of 45S5 and 77S soda-lime phospho-silicate glass surfaces: clues on different bioactivity mechanism. Langmuir 29(19), 5749–5759 (2013)

    Google Scholar 

  55. A. Tilocca, N.H. de Leeuw, Ab initio molecular dynamics study of 45S5 bioactive silicate glass. J. Phys. Chem. B 110(51), 25810–25816 (2006)

    Google Scholar 

  56. L. Giacomazzi, C. Massobrio, A. Pasquarello, First-principles investigation of the structural and vibrational properties of vitreous GeSe\(_2\). Phys. Rev. B 75(17), 174207 (2007)

    Google Scholar 

  57. S. Ispas et al., Vibrational properties of a sodium tetrasilicate glass: ab initio versus classical force fields. J. Non-Cryst. Solids 351(12–13), 1144–1150 (2005)

    Google Scholar 

  58. M. Cerruti et al., Surface modifications of bioglass immersed in TRIS-buffered solution. a multitechnical spectroscopic study. J. Phys. Chem. B 109(30), 14496–14505 (2005)

    Google Scholar 

  59. M. Cerruti, D. Greenspan, K. Powers, Effect of pH and ionic strength on the reactivity of Bioglass \(\textregistered {R}\) 45S5. Biomaterials 26(14), 1665–1674 (2005)

    Google Scholar 

  60. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1989)

    Google Scholar 

  61. E. Fois et al., Water molecules in single file: first-principles studies of one-dimensional water chains in zeolites. J. Phys. Chem. B 105(15), 3012–3016 (2001)

    Google Scholar 

  62. W. Chen et al., Role of dipolar correlations in the infrared spectra of water and ice. Phys. Rev. B 77(24), 245114 (2008)

    Google Scholar 

  63. P.L. Silvestrelli, M. Bernasconi, M. Parrinello, Ab initio infrared spectrum of liquid water. Chem. Phys. Lett. 277(5–6), 478–482 (1997)

    Google Scholar 

  64. H. Tian et al., First-principles study of the binary Ni60Ta40 metallic glass: the atomic structure and elastic properties. J. Non-Cryst. Solids 358(15), 1730–1734 (2012)

    Google Scholar 

  65. I. Elgayar et al., Structural analysis of bioactive glasses. J. Non-Cryst. Solids 351(2), 173–183 (2005)

    Google Scholar 

  66. R. Mathew et al., Toward a rational design of Bioactive glasses with optimal structural features: composition-structure correlations unveiled by solid-state NMR and MD simulations. J. Phys. Chem. B 118(3), 833–844 (2014)

    Google Scholar 

  67. Z. Strnad, Role of the glass phase in bioactive glass-ceramics. Biomaterials 13(5), 317–321 (1992)

    Google Scholar 

  68. O. Peitl, E.D. Zanotto, L.L. Hench, Highly bioactive P\(_2\)O\(_5\)-Na\(_2\)O-CaO-SiO\(_2\) glass-ceramics. J. Non-Cryst. Solids 292(1–3), 115–126 (2001)

    Google Scholar 

  69. D. Arcos, D.C. Greenspan, M. Vallet-Regí, Influence of the stabilization temperature on textural and structural features and ion release in SiO\(_2\)-CaO-P\(_2\)O\(_5\) sol-gel glasses. Chem. Mater. 14(4), 1515–1522 (2002)

    Google Scholar 

  70. A. Tilocca, Models of structure, dynamics and reactivity of bioglasses: a review. J. Mater. Chem. 20(33), 6848–6858 (2010)

    Google Scholar 

  71. J. Du, Y. Xiang, Effect of strontium substitution on the structure, ionic diffusion and dynamic properties of 45S5 Bioactive glasses. J. Non-Cryst. Solids 358(8), 1059–1071 (2012)

    Google Scholar 

  72. A. Goel, R.R. Rajagopal, J.M.F. Ferreira, Influence of strontium on structure, sintering and biodegradation behaviour of CaO-MgO-SrO-SiO\(_2\)-P\(_2\)O\(_5\)-CaF\(_2\) glasses. Acta Biomater. 7(11), 4071–4080 (2011)

    Google Scholar 

  73. A. Goel et al., Structural role of zinc in biodegradation of alkali-free bioactive glasses. J. Mater. Chem. B 1(24), 3073–3082 (2013)

    Google Scholar 

  74. J.M. Smith et al., Structural characterisation of hypoxia-mimicking bioactive glasses. J. Mater. Chem. B 1(9), 1296–1303 (2013)

    Google Scholar 

  75. A.J. Salinas et al., Substitutions of cerium, gallium and zinc in ordered mesoporous bioactive glasses. Acta Biomater. 7(9), 3452–3458 (2011)

    Google Scholar 

  76. G. Lusvardi et al., In vitro and in vivo behaviour of zinc-doped phosphosilicate glasses. Acta Biomater. 5(1), 419–428 (2009)

    Google Scholar 

  77. G. Malavasi, A. Pedone, M.C. Menziani, Study of the structural role of gallium and aluminum in 45S5 bioactive glasses by molecular dynamics simulations. J. Phys. Chem. B 117(15), 4142–4150 (2013)

    Google Scholar 

  78. J.C. Du et al., Structure of cerium phosphate glasses: molecular dynamics simulation. J. Am. Ceram. Soc. 94(8), 2393–2401 (2011)

    Google Scholar 

  79. M. Kawashita, Ceramic microspheres for in situ radiotherapy of cancer. Mater. Sci. Eng. C 22(1), 3–8 (2002)

    Google Scholar 

  80. E.M. Erbe, D.E. Day, Chemical durability of Y\(_2\)O\(_3\)-Al\(_2\)O\(_3\)-SiO\(_2\) glasses for the in vivo delivery of beta radiation. J. Biomed. Mater. Res. 27(10), 1301–1308 (1993)

    Google Scholar 

  81. J.K. Christie, A. Tilocca, Aluminosilicate glasses As Yttrium vectors for in situ radiotherapy: understanding composition-durability effects through molecular dynamics simulations. Chem. Mater. 22(12), 3725–3734 (2010)

    Google Scholar 

  82. R. Hill, An alternative view of the degradation of bioglass. J. Mater. Sci. Lett. 15(13), 1122–1125 (1996)

    Google Scholar 

  83. T. Le et al., Quantitative structure-property relationship modeling of diverse materials properties. Chem. Rev. 112(5), 2889–2919 (2012)

    Google Scholar 

  84. H.-F. Wu, C.-C. Lin, P. Shen, Structure and dissolution of CaO-ZrO\(_2\)-TiO\(_2\)-Al\(_2\)O\(_3\)-B\(_2\)O\(_3\)-SiO\(_2\) glass (II). J. Non-Cryst. Solids 209(1–2), 76–86 (1997)

    Google Scholar 

  85. P. Jund, W. Kob, R. Jullien, Channel diffusion of sodium in a silicate glass. Phys. Rev. B 64(13), 134303 (2001)

    Google Scholar 

  86. A. Tilocca, A.N. Cormack, N.H. de Leeuw, The structure of bioactive silicate glasses: new insight from molecular dynamics simulations. Chem. Mater. 19(1), 95–103 (2007)

    Google Scholar 

  87. R.N. Mead, G. Mountjoy, A molecular dynamics study of the atomic structure of (CaO)x(SiO\(_2\))1-x glasses. J. Phys. Chem. B 110(29), 14273–14278 (2006)

    Google Scholar 

  88. M.W.G. Lockyer, D. Holland, R. Dupree, NMR investigation of the structure of some bioactive and related glasses. J. Non-Cryst. Solids 188(3), 207–219 (1995)

    Google Scholar 

  89. A. Pradel et al., Mixed glass former effect in the system 0.3Li\(_2\)S-0.7[(1-x)SiS\(_2\)-xGeS\(_2\)]: a structural explanation. Chem. Mater. 10(8), 2162–2166 (1998)

    Google Scholar 

  90. T.R. Stechert, M.J.D. Rushton, R.W. Grimes, Predicted mechanism for enhanced durability of zinc containing silicate glasses. J. Am. Ceram. Soc. 96(5), 1450–1455 (2013)

    Google Scholar 

  91. J.K. Christie, J. Malik, A. Tilocca, Bioactive glasses as potential radioisotope vectors for in situ cancer therapy: investigating the structural effects of yttrium. Phys. Chem. Chem. Phys. 13(39), 17749–17755 (2011)

    Google Scholar 

  92. Y. Vaills, Y. Luspin, G. Hauret, Two opposite effects of sodium on elastic constants of silicate binary glasses. Mater. Sci. Eng. B 40(2–3), 199–202 (1996)

    Google Scholar 

  93. C.C. Lin et al., Composition dependent structure and elasticity of lithium silicate glasses: effect of ZrO2 additive and the combination of alkali silicate glasses. J. Eur. Ceram. Soc. 26(16), 3613–3620 (2006)

    Google Scholar 

  94. J.K. Christie, A. Tilocca, Integrating biological activity into radioisotope vectors: molecular dynamics models of yttrium-doped bioactive glasses. J. Mater. Chem. 22(24), 12023–12031 (2012)

    Google Scholar 

  95. J.K. Christie, A. Tilocca, Molecular dynamics simulations and structural descriptors of radioisotope glass vectors for in situ radiotherapy. J. Phys. Chem. B 116(41), 12614–12620 (2012)

    Google Scholar 

  96. P. Masini, M. Bernasconi, Ab initio simulations of hydroxylation and dehydroxylation reactions at surfaces: amorphous silica and brucite. J. Phys.: Condens. Matter 14(16), 4133 (2002)

    Google Scholar 

  97. T.A. Michalske, B.C. Bunker, Slow fracture model based on strained silicate structures. J. Appl. Phys. 56(10), 2686–2693 (1984)

    Google Scholar 

  98. B.A. Morrow, I.A. Cody, L.S.M. Lee, Infrared studies of reactions on oxide surfaces. 7. mechanism of adsorption of water and ammonia on dehydroxylated silica. J. Phys. Chem. 80(25), 2761–2767 (1976)

    Google Scholar 

  99. A. Rimola, P. Ugliengo, A quantum mechanical study of the reactivity of (SiO\(_2\))-defective silica surfaces. J. Chem. Phys. 128(20), 204702 (2008)

    Google Scholar 

  100. A. Tilocca, A.N. Cormack, Exploring the surface of bioactive glasses: water adsorption and reactivity. J. Phys. Chem. C 112(31), 11936–11945 (2008)

    Google Scholar 

  101. V. Bolis et al., Surface properties of silica-based biomaterials: Ca species at the surface of amorphous silica as model sites. J. Phys. Chem. C 112(43), 16879–16892 (2008)

    Google Scholar 

  102. N. Sahai, M. Anseau, Cyclic silicate active site and stereochemical match for apatite nucleation on pseudowollastonite bioceramic-bone interfaces. Biomaterials 26(29), 5763–5770 (2005)

    Google Scholar 

  103. A. Tilocca, A.N. Cormack, Modeling the water-bioglass interface by ab initio molecular dynamics simulations. ACS Appl. Mater. Interfaces 1(6), 1324–1333 (2009)

    Google Scholar 

  104. A.S. D’Souza, C.G. Pantano, Mechanisms for silanol formation of amorphous silica fracture surfaces. J. Am. Ceram. Soc. 82(5), 1289–1293 (1999)

    Google Scholar 

  105. E.A. Leed, C.G. Pantano, Computer modeling of water adsorption on silica and silicate glass fracture surfaces. J. Non-Cryst. Solids 325(1–3), 48–60 (2003)

    Google Scholar 

  106. A. Tilocca, A.N. Cormack, Surface signatures of bioactivity: MD simulations of 45S and 65S silicate glasses. Langmuir 26(1), 545–551 (2010)

    Google Scholar 

  107. T. Kokubo, Surface chemistry of bioactive glass-ceramics. J. Non-Cryst. Solids 120(1–3), 138–151 (1990)

    Google Scholar 

  108. H. Takadama et al., Mechanism of apatite formation induced by silanol groups—TEM observation. J. Ceram. Soc. Jpn 108(2), 118–121 (2000)

    Google Scholar 

  109. S. Labbaf et al., Spherical bioactive glass particles and their interaction with human mesenchymal stem cells in vitro. Biomaterials 32(4), 1010–1018 (2011)

    Google Scholar 

  110. S.K. Misra et al., Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass (R) composites. Biomaterials 29(12), 1750–1761 (2008)

    Google Scholar 

  111. F. Quintero et al., Laser spinning of bioactive glass nanofibers. Adv. Funct. Mater. 19(19), 3084–3090 (2009)

    Google Scholar 

  112. A. Shekhar et al., Collective oxidation behavior of aluminum nanoparticle aggregate. Appl. Phys. Lett. 102(22), 221904 (2013)

    Google Scholar 

  113. D. Spagnoli, J.P. Allen, S.C. Parker, The structure and dynamics of hydrated and hydroxylated magnesium oxide nanoparticles. Langmuir 27(5), 1821–1829 (2011)

    Google Scholar 

  114. A. Tilocca, Molecular dynamics simulations of a bioactive glass nanoparticle. J. Mater. Chem. 21(34), 12660–12667 (2011)

    Google Scholar 

  115. M. Mackovic et al., Bioactive glass (type 45S5) nanoparticles: in vitro reactivity on nanoscale and biocompatibility. J. Nanopart. Res. 14(7), 966–987 (2012)

    Google Scholar 

  116. M. Erol, A.R. Boccaccini, Nanoscaled bioactive glass particles and nanofibres. Bioact. Glasses: Mater. Prop. Appl. 129–161 (2011)

    Google Scholar 

  117. W.H. Huang et al., Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J. Mater. Sci. Mater. Med. 17(7), 583–596 (2006)

    Google Scholar 

  118. B. Zberg, P.J. Uggowitzer, J.F. Loffler, MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat. Mater. 8(11), 887–891 (2009)

    Google Scholar 

  119. B.B. Yu et al., Effect of calcium source on structure and properties of sol-gel derived bioactive glasses. Langmuir 28(50), 17465–17476 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Tilocca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tilocca, A. (2015). Rationalizing the Biodegradation of Glasses for Biomedical Applications Through Classical and Ab-initio Simulations. In: Massobrio, C., Du, J., Bernasconi, M., Salmon, P. (eds) Molecular Dynamics Simulations of Disordered Materials. Springer Series in Materials Science, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-15675-0_10

Download citation

Publish with us

Policies and ethics