Skip to main content
Log in

Stress field distribution of warp-reinforced 2.5D woven composites using an idealized meso-scale voxel-based model

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The evaluation of the stress field distribution of warp-reinforced 2.5D woven composites using meso-scale voxel-based model is described. The idealized geometry model is established by using measured parameters from the CT image. Comparison between voxel-based finite element method and experimental measurements is included. The results show that the proposed meso-scale voxel-based method is capable of accurately predicting the mechanical properties of warp-reinforced 2.5D woven composites, validated by the comparison of the initial modulus, max stress as well as the failure modes. Also, the numbers of representative volume element have an important effect on mechanical behaviors of warp-reinforced 2.5D woven composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23

Similar content being viewed by others

References

  1. Mouritz AP, Bannister MK, Falzon PJ, Leong KH (1999) Review of applications for advanced three-dimensional fiber textile composites. Compos Part A Appl Sci 30(12):1445–1461

    Article  Google Scholar 

  2. Naik NK, Azad SKNM, Durga PP (2002) Stress and failure analysis of 3D angle interlock woven composites. J Compos Mater 36(1):93–123

    Article  Google Scholar 

  3. Fang GD, Bassam ES, Dmitry I, Stephen RH (2016) Smoothing artificial stress concentrations in voxel-based models of textile composites. Compos Part A Appl Sci 80:270–284

    Article  Google Scholar 

  4. Lomov SV, Gusakov AV, Huysmans G, Prodromou A, Verpoest I (2000) Textile geometry preprocessor for meso-mechanica models of woven composites. Compos Sci Technol 60:2083–2095

    Article  Google Scholar 

  5. Hallal A, Younes R, Fardoun F, Nehme S (2012) Improved analytical model to predict the effective elastic properties of 2.5D interlock woven fabrics composite. Compos Struct 94(10):3009–3028

    Article  Google Scholar 

  6. Kwon YW, Kim DH, Chu T (2006) Multi-scale modeling of refractory woven fabric composites. J Mater Sci 41:6647–6654. doi:10.1007/s10853-006-0195-4

    Article  Google Scholar 

  7. Boisse P, Gasser A, Hagege B, Bolloet JL (2005) Analysis of the mechanical behavior of woven fibrous material using virtual tests at the unit cell level. J Mater Sci 40:5955–5962. doi:10.1007/s10853-005-5069-7

    Article  Google Scholar 

  8. Cox BN, Dadkhah MS (1995) The macroscopic elasticity of 3D woven composites. J Comput Mater 29:785–819

    Article  Google Scholar 

  9. Iarve EV, Mollenhauer DH, Zhou EG, Breitzman T, Whitney TJ (2009) Independent mesh method-based prediction of local and volume average fields in textile composites. Compos Part A Appl Sci 40(12):1880–1890

    Article  Google Scholar 

  10. Jiang WG, Hallett S, Wisnom M (2008) Development of domain superposition technique for the modelling for woven fabric composites. Mechanical response of composites. Springer, Netherlands, pp 281–291

    Chapter  Google Scholar 

  11. Mahadik Y, Hallett SR (2010) Finite element modeling of tow geometry in 3D woven fabrics. Compos Part A Appl Sci 41(9):1192–1200

    Article  Google Scholar 

  12. Lu ZX, Zhou Y, Yang ZY, Liu Q (2013) Multi-scale finite element analysis of 2.5D woven fabric composites under on-axis and off-axis tension. Compot Mater Sci 79:485–494

    Article  Google Scholar 

  13. Song J, Wen WD, Cui HT, Zhang HJ, Xu Y (2016) Finite element analysis of 2.5D woven composites, part II: damage behavior simulation and strength prediction. Appl Compos Mater 23:45–69

    Article  Google Scholar 

  14. Kim HJ, Swan CC (2003) Voxel-based meshing and unit-cell analysis of textile composites. Int J Numer Methods Eng 56:997–1006

    Google Scholar 

  15. Potter E, Pinho S, Robinson P, Iannucci I, McMillan AJ (2012) Mesh generation and geometrical modelling of 3D woven composites with variable tow cross-sections. Comput Mater Sci 51(1):103–111

    Article  Google Scholar 

  16. Zhang C, Li N, Wang WZ, Binienda WK, Fang HB (2015) Progressive damage simulation of triaxially braided composite using a 3D meso-scale finite element model. Compos Struct 125:104–116

    Article  Google Scholar 

  17. Zhang C, Xu XW (2013) Finite element analysis of 3D braided composites based on three unit-cells models. Compos Struct 98:130–142

    Article  Google Scholar 

  18. Doitrand A, Fagiano C, Irisarri FX, Hirsekorn M (2015) Comparison between voxel and consistent meso-scale models of woven composites. Compos Part A Appl Sci 73:143–154

    Article  Google Scholar 

  19. Isart N, Said BE, Hallett SR, Blanco N (2015) Internal geometric modelling of 3D woven composites: a comparison between different approaches. Compos Struct 132:1219–1230

    Article  Google Scholar 

  20. Jin LY (2012) Research on the mechanical properties for stiffness and strength of 4D in-plain C/C composites. Master Thesis 21

  21. Guo QW, Zhang GL, Li JL (2013) Process parameters design of a three-dimensional and five-directional braided composites joint based on finite element analysis. Mater Des 46:291–300

    Article  Google Scholar 

  22. Dong WF, Xiao J, Li Y, Wu HQ, Zhang LQ (2005) Theoretical study on elastic properties of 2.5D braided composites. J NanJing Univ Aeronaut Astronaut 37(5):659–663

    Google Scholar 

  23. Grail G, Hirsekorn M, Wendling A, Hivet G, Hambli R (2013) Consistent finite element mesh generation for meso-scale modeling of textile composites with preformed and compacted reinforcements. Compos Part A Appl Sci 55:143–151

    Article  Google Scholar 

  24. De Carvalho NV, Pinho ST, Robinson P (2011) Reducing the domain in the mechanical analysis of periodic structures, with application to woven composites. Compos Sci Technol 71(7):969–979

    Article  Google Scholar 

  25. Segurado J, Llorca J (2002) A numerical approximation to the elastic properties of sphere-reinforced composites. J Mech Phys Solids 50:2107–2121

    Article  Google Scholar 

  26. Zhang C, Xu X (2013) Application of three unit-cells models on mechanical analysis of 3D five-directional and full five-directional braided composites. Appl Compos Mater 20(5):803–825

    Article  Google Scholar 

  27. Huang ZM, Liu L (2014) Assessment of composite failure and ultimate strength without experiment on composite. Acta Mech Sin 30(4):569–588

    Article  Google Scholar 

  28. Wang XY, Tang YZ (1999) Mechanical analysis and designing of composite materials. National defense science and technology university press, Changsha (In Chinese)

    Google Scholar 

  29. Budiansky B, Fleck N (1993) Compressive failure of fiber composites. J Mech Phys Solids 41:183–211

    Article  Google Scholar 

  30. Reifsnider K (1977) Some fundamental aspects of the fatigue and fracture response of composite materials. In: Proceedings of the 14th annual meeting, USA, pp 373–384

  31. Hashin Z (1980) Failure criteria for unidirectional fiber composite. J Appl Mech 47:329–334

    Article  Google Scholar 

  32. Cordebois J, Sidoroff F (1980) Anisotropic damage in elasticity and plasticity. Journal de mecanique theorique et appliquee 45–59

  33. Fang GD, Liang J, Wang BL (2009) Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension. Compos Struct 89:126–133

    Article  Google Scholar 

  34. Zhang DT, Chen L, Sun Y, Wang XM (2015) Transverse tensile damage behaviors of three-dimensional five-directional braided composites by meso-scale finite element approach. J Reinf Plast Compos 34(15):1202–1220

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research Projects of China (No. 2016YFC-0304301), Scientific and Technological Transformative Project of Jiangsu Province (No. BA2016170) and Natural Science Foundation of Jiangsu Province (No. BK20160157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Chen, L., Wang, Y. et al. Stress field distribution of warp-reinforced 2.5D woven composites using an idealized meso-scale voxel-based model. J Mater Sci 52, 6814–6836 (2017). https://doi.org/10.1007/s10853-017-0921-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0921-0

Keywords

Navigation