Skip to main content
Log in

Controllable synthesis of SrCO3 with different morphologies and their co-catalytic activities for photocatalytic oxidation of hydrocarbon gases over TiO2

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The controlled synthesis of strontium carbonate (SrCO3) micro-/nanostructures with various morphologies, such as sphere, pompon, arborization, spindle, and hexagonal prism, are successfully achieved through rather facile hydrothermal processes. The morphology of SrCO3 can be elegantly adjusted by employing different CO3 2− sources and controlling the viscidity of the organic solvents. The underlying mechanism of morphology evolution is discussed. Moreover, the SrCO3-loaded TiO2 (SrCO3/TiO2) nanocomposites are shown to improve the activity for oxidizing hydrocarbon gases under simulated solar light irradiation. The 5.0 wt% SrCO3 (nanosphere)/TiO2 exhibited the highest performance toward the oxidation of the hydrocarbons gases, and its activity on methane oxidation is more than double that of P25 TiO2. These results are valuable for both carbonate synthesis and their use in the oxidation of hydrocarbons gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Scheme 1
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Cozzoli PD, Pellegrino T, Manna L (2006) Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem Soc Rev 35:1195–1208

    Article  Google Scholar 

  2. Chairam S, Poolperm C, Somsook E (2009) Starch vermicelli template-assisted synthesis of size/shape-controlled nanoparticles. Carbohydr Polym 75:694–704

    Article  Google Scholar 

  3. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  Google Scholar 

  4. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389

    Article  Google Scholar 

  5. Qi L, Cölfen H, Antonietti M (2000) Control of barite morphology by double-hydrophilic block copolymers. Chem Mater 12:2392–2403

    Article  Google Scholar 

  6. Cao M, Wu X, He X, Hu C (2005) Microemulsion-mediated solvothermal synthesis of SrCO3 nanostructures. Langmuir 21:6093–6096

    Article  Google Scholar 

  7. Bastow TJ (2002) Electric field gradients at the M-site in MCO3: M = Mg, Ca, Sr and Ba. Chem Phys Lett 354:156–159

    Article  Google Scholar 

  8. Du J, Liu Z, Li Z, Han B, Huang Y, Zhang J (2005) Synthesis of mesoporous SrCO3 spheres and hollow CaCO3 spheres in room-temperature ionic liquid. Microporous Mesoporous Mater 83:145–149

    Article  Google Scholar 

  9. Wang L, Zhu Y (2005) Effects of nanostructure on catalytic degradation of ethanol on SrCO3 catalysts. J Phys Chem B 109:5118–5123

    Article  Google Scholar 

  10. Shi J, Li J, Zhu Y, Wei F, Zhang X (2002) Nanosized SrCO3-based chemiluminescence sensor for ethanol. Anal Chim Acta 466:69–78

    Article  Google Scholar 

  11. Zhang Q, Meng F, Zha L, Wang X, Zhang G (2015) A sensitive cataluminescence-based sensor using a SrCO3/graphene composite for n-propanol. RSC Adv 5:57482–57489

    Article  Google Scholar 

  12. Omata K, Nukui N, Hottai T, Showa Y, Yamada M (2004) Strontium carbonate supported cobalt catalyst for dry reforming of methane under pressure. Catal Commun 5:755–758

    Article  Google Scholar 

  13. Shi L, Du F (2007) Solvothermal synthesis of SrCO3 hexahedral ellipsoids. Mater Lett 61:3262–3264

    Article  Google Scholar 

  14. Rautaray D, Sainkar SR, Sastry M (2003) SrCO3 crystals of ribbonlike morphology grown within thermally evaporated sodium Bis-2-ethylhexylsulfosuccinate thin films. Langmuir 19:888–892

    Article  Google Scholar 

  15. Zhu W, Zhang G, Li J, Zhang Q, Piao X, Zhu S (2010) Hierarchical mesoporous SrCO3 submicron spheres derived from reaction-limited aggregation induced “rod-to-dumbbell-to-sphere” self-assembly. CrystEngComm 12:1795

    Article  Google Scholar 

  16. Wu S, Yin S, Cao H, Lu Y, Yin J, Li B (2011) Glucosan controlled biomineralization of SrCO3 complex nanostructures with superhydrophobicity and adsorption properties. J Mater Chem 21:8734

    Article  Google Scholar 

  17. Jahangiri H, Ranjbar M, Taher MA, Kazerooni H (2015) Using microwave heating for synthesis of SrCO3 nanostructures with different morphologies. J Ind Eng Chem 21:1132–1136

    Article  Google Scholar 

  18. Wang W-S, Zhen L, Xu C-Y, Yang L, Shao W-Z (2008) Room temperature synthesis of hierarchical SrCO3 architectures by a surfactant-free aqueous solution route. Cryst Growth Des 8:1734–1740

    Article  Google Scholar 

  19. Cargnello M, Jaén JJD, Garrido JCH, Bakhmutsky K, Montini T, Gámez JJC, Gorte RJ, Fornasiero P (2012) Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science 337:713–717

    Article  Google Scholar 

  20. Gandhi HS, Graham GW, McCabe RW (2003) Automotive exhaust catalysis. J Catal 216:433–442

    Article  Google Scholar 

  21. Twigg MV (2007) Progress and future challenges in controlling automotive exhaust gas emissions. Appl Catal B 70:2–15

    Article  Google Scholar 

  22. Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166

    Article  Google Scholar 

  23. Ganguli AK, Ganguly A, Vaidya S (2010) Microemulsion-based synthesis of nanocrystalline materials. Chem Soc Rev 39:474–485

    Article  Google Scholar 

  24. Sharma S, Yadav N, Chowdhury PK, Ganguli AK (2015) Controlling the microstructure of reverse micelles and their templating effect on shaping nanostructures. J Phys Chem B 119:11295–11306

    Article  Google Scholar 

  25. Zhong LS, Hu JS, Liang HP, Cao AM, Song WG, Wan LJ (2006) Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv Mater 18:2426–2431

    Article  Google Scholar 

  26. Colfen H, Antonietti M (2005) Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed Engl 44:5576–5591

    Article  Google Scholar 

  27. Yu S-H, Cölfen H, Antonietti M (2003) Polymer-controlled morphosynthesis and mineralization of metal carbonate superstructures. J Phys Chem B 107:7396–7405

    Article  Google Scholar 

  28. Pan X, Chen X, Yi Z (2016) Photocatalytic oxidation of methane over SrCO3 decorated SrTiO3 nanocatalysts via a synergistic effect. Phys Chem Chem Phys 18:31400–31409

    Article  Google Scholar 

  29. Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J (2012) Nano-photocatalytic materials: possibilities and challenges. Adv Mater 24:229–251

    Article  Google Scholar 

  30. van der Meulen T, Mattson A, Österlund L (2007) A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase–rutile TiO2 nanoparticles: role of surface intermediates. J Catal 251:131–144

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Project on Basic Research (Grant No. 2013CB933203), the National Natural Science Foundation of China (Grant Nos. 21373224, 21577143, 21377044 and 51502289), and the Natural Science Foundation of Fujian Province (Grant Nos. 2014H0054 and 2015J05044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Yu or Zhiguo Yi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1376 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Yu, Y. & Yi, Z. Controllable synthesis of SrCO3 with different morphologies and their co-catalytic activities for photocatalytic oxidation of hydrocarbon gases over TiO2 . J Mater Sci 52, 5106–5116 (2017). https://doi.org/10.1007/s10853-017-0748-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0748-8

Keywords

Navigation