Skip to main content
Log in

Effect of Sn content on the structural and photoelectric properties of IATO films

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Indium aluminum tin oxide (IATO) films with high Hall mobility have been deposited on the SiO2 (0001) substrates by metal organic chemical vapor deposition. The structural, morphological, and optoelectronic properties of the IATO films with Sn contents varied from 0 to 18 % [Sn/(In+Al+Sn) atomic ratio] were studied in detail. Well-crystallized IATO film with the highest Hall mobility of 15.59 cm2 V−1 s−1 was obtained at 15 % of Sn content, and the corresponding carrier concentration and resistivity were about 2.38 × 1020 and 1.51 × 10−3 Ω cm, respectively. The average transmittance for all the obtained films in the visible range was over 81 %, and the optical band gap of the films changed in the range of 4.05–5.03 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ohta H, Nomura K, Hiramatsu H et al (2003) Frontier of transparent oxide semiconductors. Solid State Electron 47:2261–2267

    Article  Google Scholar 

  2. Kamiya T, Hiramatsu H, Nomura K et al (2006) Device applications of transparent oxide semiconductors: excitonic blue LED and transparent flexible TFT. J Electroceramics 17:267–275

    Article  Google Scholar 

  3. Kim H, Gilmore CM, Pique A et al (1999) Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices. J Appl Phys 86:6451–6461

    Article  Google Scholar 

  4. Ohta H, Orita M, Hirano M et al (2000) Highly electrically conductive indium-tin-oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition. Appl Phys Lett 76:2740–2742

    Article  Google Scholar 

  5. Hamberg I, Granqvist CG (1986) Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J Appl Phys 60:R123–R160

    Article  Google Scholar 

  6. Minami T, Miyata T, Yamamoto T (1998) Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering. Surf Coat Tech 108:583–587

    Article  Google Scholar 

  7. Nomura K, Ohta H, Takagi A et al (2004) Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432:488–492

    Article  Google Scholar 

  8. Wu GM, Liu CY, Sahoo AK (2015) RF sputtering deposited a-IGZO films for LCD alignment layer application. Appl Surf Sci 354:48–54

    Article  Google Scholar 

  9. Kamiya T, Hosono H (2010) Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater 2:15–22

    Article  Google Scholar 

  10. Jeong JK, Yang HW, Jeong JH et al (2008) Origin of threshold voltage instability in indium–gallium–zinc oxide thin film transistors. Appl Phys Lett 93:123508

    Article  Google Scholar 

  11. Chen TC, Chang TC, Hsieh TY et al (2010) Light-induced instability of an InGaZnO thin film transistor with and without SiOx passivation layer formed by plasma-enhanced-chemical-vapor-deposition. Appl Phys Lett 97:192103

    Article  Google Scholar 

  12. Wager JF (2003) Transparent electronics. Science 300:1245–1246

    Article  Google Scholar 

  13. Qin X, Dong H, Brennan B et al (2013) Impact of N2 and forming gas plasma exposure on the growth and interfacial characteristics of Al2O3 on AlGaN. Appl Phys Lett 103:221604

    Article  Google Scholar 

  14. Zhang Z, Li L, Yang JC (2011) γ-Al2O3 thin film formation via oxidation of β-NiAl (110). Acta Mater 59:5905–5916

    Article  Google Scholar 

  15. Du XJ, Li Z, Luan CN et al (2015) Characterization of tunable band gap aluminum indium oxide films prepared on SiO2 (0001) by MOCVD. J Mater Sci: Mater Electron 27:599–605

    Google Scholar 

  16. Orita M, Ohta H, Hirano M et al (2000) Deep-ultraviolet transparent conductive beta-Ga2O3 thin films. Appl Phys Lett 77:4166

    Article  Google Scholar 

  17. Zhang DH, Ma HL (1996) Scattering mechanisms of charge carriers in transparent conducting oxide films. Appl Phys A 62:487–492

    Article  Google Scholar 

  18. Koshizaki N, Umehara H, Oyama T (1998) XPS characterization and optical properties of Si/SiO2, Si/Al2O3 and Si/MgO co-sputtered films. Thin Solid Films 325:130–136

    Article  Google Scholar 

  19. Du J, Huang L, Chen Z et al (2009) A controlled method to synthesize hybrid In2O3/Ag nanochains and nanoparticles: surface-enhanced Raman scattering. J Phys Chem C 113:9998–10004

    Article  Google Scholar 

  20. Yan L, Pan JS, Ong CK (2006) XPS studies of room temperature magnetic Co-doped SnO2 deposited on Si. Mater Sci Eng 128:34–36

    Article  Google Scholar 

  21. Liu J, Deng H, Zhu L et al (2014) Structure, optical and magnetic properties of Bi1-xEuxFeO3 films fabricated by pulsed laser deposition. Appl Surf Sci 316:78–81

    Article  Google Scholar 

  22. Zhou B, Rogachev AV, Liu Z et al (2012) Effects of oxygen/argon ratio and annealing on structural and optical properties of ZnO thin films. Appl Surf Sci 258:5759–5764

    Article  Google Scholar 

  23. Lu JG, Fujita S, Kawaharamura T et al (2007) Carrier concentration dependence of band gap shift in n-type ZnO:Al films. J Appl Phys 101:83705

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant No. 51272138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Wang, W., Wang, M. et al. Effect of Sn content on the structural and photoelectric properties of IATO films. J Mater Sci 52, 367–374 (2017). https://doi.org/10.1007/s10853-016-0337-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0337-2

Keywords

Navigation