Skip to main content
Log in

Mesoporous activated carbon decorated with MnO as anode materials for lithium ion batteries

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mesoporous activated carbon decorated with MnO (MnO/MAC hybrid) was prepared by pyrolysing Mn(CH3COO)2 adsorbed MAC. XRD result proves that typical MnO crystals exist in the MnO/MAC hybrid. The SEM analysis indicates that a lot of pores on the surface of MAC have been filled by MnO. BET result reveals that some pores of MAC are filled by MnO and the MnO/MAC hybrid is a typical mesoporous material. This novel structure ensures the hybrid possesses excellent electrochemical performance. MnO/MAC hybrid delivers a high initial discharge capacity of 1086.1 mAh g−1 and a reversible charge capacity of 600.6 mAh g−1. In addition, MnO/MAC hybrid also exhibits excellent rate performance and cycling performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457

    Article  Google Scholar 

  2. Noorden RV (2014) A better battery: chemists are reinventing rechargeable cells to drive down costs and boost capacity. Nature 507:26–28

    Article  Google Scholar 

  3. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29

    Article  Google Scholar 

  4. Zhang Q, Ge S, Xue H, Wang X, Sun H, Li A (2014) Fabrication of a fayalite@C nanocomposite with superior lithium storage for lithium ion battery anodes. RSC Adv 4:58260–58264

    Article  Google Scholar 

  5. Dubal DP, Ayyad O, Ruiz V, Gómez-Romero P (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44:1777–1790

    Article  Google Scholar 

  6. Hu H, Cheng H, Li G, Liu J, Yu Y (2015) Design of SnO2/C hybrid triple-layer nanospheres as Li-ion battery anodes with high stability and rate capability. J Mater Chem A 3:2748–2755

    Article  Google Scholar 

  7. Zhu Q, Hu H, Li G, Zhu C, Yu Y (2015) TiO2 nanotube arrays grafted with MnO2 nanosheets as high-performance anode for lithium ion battery. Electrochim Acta 156:252–260

    Article  Google Scholar 

  8. Chen LB, Lu N, Xu CM, Yu CH, Wang TH (2009) Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries. Electrochim Acta 54:4198–4201

    Article  Google Scholar 

  9. Huang XH, Tu JP, Zhang CQ, Xiang JY (2007) Net-structured NiO–C nanocomposite as Li-intercalation electrode material. Electrochem Commun 9:1180–1184

    Article  Google Scholar 

  10. Yu XQ, He Y, Sun JP, Tang K, Li H, Chen LQ, Huang XJ (2009) Nanocrystalline MnO thin film anode for lithium ion batteries with low over potential. Electrochem Commun 11:791–794

    Article  Google Scholar 

  11. Zhong K, Xia X, Zhang B, Li H, Wang ZX, Chen L (2010) MnO powder as anode active materials for lithium ion batteries. J Power Sources 195:3300–3308

    Article  Google Scholar 

  12. Liu YM, Zhao XY, Li F, Xia D (2011) Facile synthesis of MnO-C anode materials for lithium-ion batteries. Electrochim Acta 56:6448–6452

    Article  Google Scholar 

  13. Zhang Q, Ge SW, Xue H, Wang X, Sun H, Zhu Z, Liang W, Li A (2014) Novel MnO/conjugated microporous polymer derived-porous hard carbon nanocomposite for superior lithium storage. RSC Adv 4:41649–41653

    Article  Google Scholar 

  14. Liu J, Pan QM (2010) MnO/C nanocomposites as high capacity anode materials for Li-Ion batteries. Electrochem Solid State Lett 13:A139–A142

    Article  Google Scholar 

  15. Sun B, Chen Z, Kim HS, Ahn H, Wang G (2011) MnO/C core–shell nanorods as high capacity anode materials for lithium-ion batteries. J Power Sources 196:3346–3349

    Article  Google Scholar 

  16. Ding YL, Wu CY, Yu HM, Xie J, Cao GS, Zhu TJ, Zhao XB, Zeng YW (2011) Coaxial MnO/C nanotubes as anodes for lithium-ion batteries. Electrochim Acta 56:5844–5848

    Article  Google Scholar 

  17. Zhang S, Zhu L, Song H, Chen X, Zhou J (2014) Enhanced electrochemical performance of MnO nanowire/graphene composite during cycling as the anode material for lithium-ion batteries. Nano Energy 10:172–180

    Article  Google Scholar 

  18. Hsieh CT, Lin CY, Lin JY (2011) High reversibility of Li intercalation and de-intercalation in MnO-attached graphene anodes for Li-ion batteries. Electrochim Acta 56:8861–8867

    Article  Google Scholar 

  19. Zhang K, Han P, Gu L, Zhang L, Liu Z, Kong Q, Zhang C, Dong S, Zhang Z, Yao J, Xu H, Cui G, Chen L (2012) Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ion batteries. ACS Appl Mater Interfaces 4:658–664

    Article  Google Scholar 

  20. Wang JG, Yang Y, Huang ZH, Kang F (2015) MnO-carbon hybrid nanofiber composites as superior anode materials for lithium-ion batteries. Electrochim Acta 170:164–170

    Article  Google Scholar 

  21. Hu H, Cheng H, Liu Z, Yu Y (2015) Facile synthesis of carbon spheres with uniformly dispersed MnO nanoparticles for lithium ion battery anode. Electrochim Acta 152:44–52

    Article  Google Scholar 

  22. Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950

    Article  Google Scholar 

  23. Zhu M, Weber CJ, Yang Y, Konuma M, Starke U, Kern K, Bittner AM (2008) Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes. Carbon 46:1829–1840

    Article  Google Scholar 

  24. Li W, Chen D, Li Z, Shi Y, Wan Y, Wang G, Jiang Z, Zhao D (2007) Nitrogen-containing carbon spheres with very large uniform mesopores: the superior electrode materials for EDLC in organic electrolyte. Carbon 45:1757–1763

    Article  Google Scholar 

  25. He X, Li R, Qiu J, Xie K, Ling P, Yu M, Zhang X, Zheng M (2012) Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template. Carbon 50:4911–4921

    Article  Google Scholar 

  26. Hassan FM, Chen Z, Yu A, Chen Z, Xiao X (2013) Sn/SnO2 embedded in mesoporous carbon nanocomposites as negative electrode for lithium ion batteries. Electrochim Acta 87:844–852

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Nature Science Foundation of China (No. 21466020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingtang Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 917 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wang, W., Jiang, D. et al. Mesoporous activated carbon decorated with MnO as anode materials for lithium ion batteries. J Mater Sci 51, 3536–3544 (2016). https://doi.org/10.1007/s10853-015-9673-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9673-x

Keywords

Navigation