Skip to main content
Log in

Physico-chemical properties of fractionated softwood kraft lignin and its potential use as a bio-based component in blends with polyethylene

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study describes a systematic characterization of lignin samples fractionated from industrial black liquor and an evaluation of their suitability as a component (50 wt.%) in thermoplastic blends with polyethylene with a special emphasis on tensile and impact properties. Industrial softwood kraft lignin was isolated from three different cooking stages and subsequently fractionated by sequential acid precipitation. Altogether, nine lignin fractions were subjected to several chemical/thermal analyses to compare their structural features and thermal decomposition properties. Lignin samples precipitated at pH 10.5 exhibited the highest molecular weight (M w) and purity, demonstrated by the lowest content of sulfur and polysaccharides. In contrast, samples precipitated at a low pH in general exhibited higher amount of impurities and low methoxyl group content. It was found that lignin precipitated at low pH contained the biggest share of sulfur present in kraft lignin. However, about 70 % of sulfur in these samples is present in non-bounded form and could be extracted with CS2. Additionally, low M w lignin exhibited a significantly lower T g value, which could favor material processing. A notable decrease in the thermal stability of the tested lignin samples was observed with a decrease in the molecular weight. In addition, lignin with a low M w, high phenolic hydroxyl groups, and lower number of double bonds seems to be favorable for increased tensile strength and elastic modulus of the polyethylene–lignin blend materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

a c :

Charpy impact strength

a cN :

Charpy notched impact strength

ASL:

Acid-soluble lignin

BL:

Black liquor

DBE:

Double bond equivalent

DTG:

First derivative of TGA curve

DWL:

Dissolved wood lignin

E-Modulus:

Tensile modulus

HDPE:

High-density polyethylene

HPAEC:

High-performance anion-exchange chromatography

IC:

Ion chromography

M w :

Molecular weight

NMR:

Nuclear magnetic resonance

OMe:

Methoxyl group content

PE:

Polyethylene

Ph-OH:

Phenolic hydroxyl group content

T1, T2, T3:

Max degradation peaks (thermal analysis)

T g :

Glass transition temperature

TGA:

Thermal gravimetric analysis

ε b :

Elongation at break

σ max :

Tensile strength

References

  1. Clark JH, Luque R, Matharu AS (2012) Green chemistry, biofuels, and biorefinery. Annu Rev Chem Biomol Eng 3:183–207

    Article  Google Scholar 

  2. Kobayashi H, Fukuoka A (2013) Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chem 15:1740–1763

    Article  Google Scholar 

  3. Kumar V, Dhall P, Kumar R, Kumar A (2013) Bioconversion of lignocellulosic biomass for bioethanol production. Biofuels production. Wiley, New York, pp 85–118

    Chapter  Google Scholar 

  4. Alekhina M, Ershova O, Ebert A, Heikkinen S, Sixta H (2015) Softwood kraft lignin for value-added applications: fractionation and structural characterization. Ind Crops Prod 66:220–228

    Article  Google Scholar 

  5. Smolarski N (2012) High-value opportunities for lignin: unlocking its potential. Frost & Sullivan, Paris. http://www.greenmaterials.fr/wp-content/uploads/2013/01/high-value-opportunities-for-lignin-unlocking-its-potential-market-insights.pdf. Accessed 15 Dec 2014

  6. Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290

    Article  Google Scholar 

  7. Higson A, Smith C (2011) NNFCC: renewable chemicals factsheet: lignin. http://www.nnfcc.co.uk/publications/nnfcc-renewable-chemicals-factsheet-lignin. Accessed 12 Dec 2014

  8. Stewart D (2008) Lignin as a base material for materials applications: chemistry, application and economics. Ind Crops Prod 27:202–207

    Article  Google Scholar 

  9. Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crops Prod 33:259–276

    Article  Google Scholar 

  10. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092

    Article  Google Scholar 

  11. Faludi G, Link Z, Renner K, Móczó J, Pukánszky B (2014) Factors determining the performance of thermoplastic polymer/wood composites; the limiting role of fiber fracture. Mater Des 61:203–210

    Article  Google Scholar 

  12. Alexy P, KošÍíková B, Podstránska G (2000) The effect of blending lignin with polyethylene and polypropylene on physical properties. Polymer 41:4901–4908

    Article  Google Scholar 

  13. Kadla JF, Kubo S (2003) Miscibility and hydrogen bonding in blends of poly(ethylene oxide) and kraft lignin. Macromolecules 36:7803–7811

    Article  Google Scholar 

  14. Canetti M, Bertini F (2009) Influence of the lignin on thermal degradation and melting behaviour of poly(ethylene terephthalate) based composites. e-Polymers 9:596–605

    Article  Google Scholar 

  15. Pouteau C, Baumberger S, Cathala B, Dole P (2004) Lignin–polymer blends: evaluation of compatibility by image analysis. C R Biol 327:935–943

    Article  Google Scholar 

  16. Reza Barzegari M, Alemdar A, Zhang Y, Rodrigue D (2012) Mechanical and rheological behavior of highly filled polystyrene with lignin. Polym Compos 33:353–361

    Article  Google Scholar 

  17. Sailaja RRN (2005) Low density polyethylene and grafted lignin polyblends using epoxy-functionalized compatibilizer: mechanical and thermal properties. Polym Int 54:1589–1598

    Article  Google Scholar 

  18. Sailaja RRN, Deepthi MV (2010) Mechanical and thermal properties of compatibilized composites of polyethylene and esterified lignin. Mater Des 31:4369–4379

    Article  Google Scholar 

  19. Fasching M, Schröder P, Wollboldt RP, Weber Hedda K, Sixta H (2008) A new and facile method for isolation of lignin from wood based on complete wood dissolution. Holzforschung 62(1):15–23

    Article  Google Scholar 

  20. de Sousa F, Reimann A, Jansson MB, Nilvebrant N-O (2001) Estimating the amount of phenolic hydroxyl groups in lignins, 11th ISWFPC. Nice, France, pp 649–653

    Google Scholar 

  21. Zakis GF (1994) Methoxy groups. In: The functional analysis of lignins and their derivatives. Technical Association of the Pulp & Paper Industry, pp. 3–7

  22. Mansouri N-EE, Salvadó J (2006) Structural characterization of technical lignins for the production of adhesives: application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind Crops Prod 24:8–16

    Article  Google Scholar 

  23. Sahoo S, Seydibeyoğlu MÖ, Mohanty AK, Misra M (2011) Characterization of industrial lignins for their utilization in future value added applications. Biomass Bioenergy 35:4230–4237

    Article  Google Scholar 

  24. Robert DR, Bardet M, Gellerstedt G, Lindfors EL (1984) Structural changes in lignin during kraft cooking Part 3. Dissolved lignins. J Wood Chem Technol 4:239–263

    Article  Google Scholar 

  25. Svensson S (2008) minimizing the sulphur content in kraft lignin. SFTI-packforsk, Stockholm. http://www.diva-portal.org/smash/get/diva2:1676/FULLTEXT01.pdf. Accessed 29 Dec 2014

  26. Rydholm SA (1985) Chemical pulping. Pulping processes. Krieger Publishing Company, Malabar, pp 589–596

    Google Scholar 

  27. Koda K, Gaspar AR, Yu L, Argyropoulos DS (2005) Molecular weight-functional group relations in softwood residual kraft lignins. Holzforschung 59:612–619

    Article  Google Scholar 

  28. Helander M, Theliander H, Lawoko M, Henriksson G, Zhang L, Lindström ME (2013) Fractionation of technical lignin: molecular mass and pH effects. Bioresources 8:2270–2282

    Article  Google Scholar 

  29. Sevastyanova O, Helander M, Chowdhury S et al (2014) Tailoring the molecular and thermo-mechanical properties of kraft lignin by ultrafiltration. J Appl Polym Sci. doi:10.1002/app.40799

    Google Scholar 

  30. Marton J (1971) Reactions in alkaline pulping. Lignin: occurrence, formation, strcuture and recations. Wiley, New York, pp 639–694

    Google Scholar 

  31. Mohamad Ibrahim MN, Zakaria N, Sipaut CS, Sulaiman O, Hashim R (2011) Chemical and thermal properties of lignins from oil palm biomass as a substitute for phenol in a phenol formaldehyde resin production. Carbohydr Polym 86:112–119

    Article  Google Scholar 

  32. Brebu M, Vasile C (2010) Thermal degradation of lignin—a review. Cellul Chem Technol 44:353–363

    Google Scholar 

  33. Jakab E, Faix O, Till F, Székely T (1995) Thermogravimetry/mass spectrometry study of six lignins within the scope of an international round robin test. J Anal Appl Pyrol 35:167–179

    Article  Google Scholar 

  34. Chu S, Subrahmanyam AV, Huber GW (2013) The pyrolysis chemistry of a [small beta]-O-4 type oligomeric lignin model compound. Green Chem 15:125–136

    Article  Google Scholar 

  35. Masuku Christopher P, Vuori A, Bredenberg JBS (1988) Thermal reactions of the bonds in lignin. I. Thermolysis of 4-propylguaiacol. Holzforschung 42:361–368

    Article  Google Scholar 

  36. Afifi AI, Hindermann JP, Chornet E, Overend RP (1989) The cleavage of the aryl-oxygen-methyl bond using anisole as a model compound. Fuel 68:498–504

    Article  Google Scholar 

  37. Sun R, Tomkinson J, Lloyd Jones G (2000) Fractional characterization of ash-AQ lignin by successive extraction with organic solvents from oil palm EFB fibre. Polym Degrad Stab 68:111–119

    Article  Google Scholar 

  38. Saito T, Brown RH, Hunt MA et al (2012) Turning renewable resources into value-added polymer: development of lignin-based thermoplastic. Green Chem 14:3295–3303

    Article  Google Scholar 

  39. Stevens MP (1999) Polymer chemistry: an introduction. Oxford University Press, Oxford

    Google Scholar 

  40. Feldman D, Banu D, Campanelli J, Zhu H (2001) Blends of vinylic copolymer with plasticized lignin: thermal and mechanical properties. J Appl Polym Sci 81:861–874

    Article  Google Scholar 

  41. Lora J, Glasser W (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10:39–48

    Article  Google Scholar 

  42. Tejado A, Peña C, Labidi J, Echeverria JM, Mondragon I (2007) Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresour Technol 98:1655–1663

    Article  Google Scholar 

  43. Glasser WG, Jain RK (1993) Lignin derivatives. I. Alkanoates. Holzforschung 47:225–233

    Article  Google Scholar 

  44. Javad S, Sally K, Rosa DdS, Leao A, Sain M (2014) Thermal characteristics of lignin residue from industrial processes. Bioresources 9:725–737

    Google Scholar 

  45. Hatakeyama T, Hatakeyama H (2004) Lignin. Thermal properties of green polymers and biocomposites. Kluwer Academic Publishers, Netherlands, pp 171–215

    Google Scholar 

  46. Kubo S, Kadla JF (2005) Hydrogen bonding in lignin: a fourier transform infrared model compound study. Biomacromolecules 6:2815–2821

    Article  Google Scholar 

  47. Olsson A-M, Salmen L (1997) The effect of lignin composition on the viscoelastic properties of wood. Nord Pulp Pap Res J 12:140–144

    Article  Google Scholar 

  48. Pucciariello R, Villani V, Bonini C, D’Auria M, Vetere T (2004) Physical properties of straw lignin-based polymer blends. Polymer 45:4159–4169

    Article  Google Scholar 

  49. Schorr D, Diouf PN, Stevanovic T (2014) Evaluation of industrial lignins for biocomposites production. Ind Crops Prod 52:65–73

    Article  Google Scholar 

  50. Gordobil O, Egüés I, Llano-Ponte R, Labidi J (2014) Physicochemical properties of PLA lignin blends. Polym Degrad Stab 108:330–338

    Article  Google Scholar 

  51. Hilburg SL, Elder AN, Chung H, Ferebee RL, Bockstaller MR, Washburn NR (2014) A universal route towards thermoplastic lignin composites with improved mechanical properties. Polymer 55:995–1003

    Article  Google Scholar 

  52. Gregorová A, Cibulková Z, Košíková B, Šimon P (2005) Stabilization effect of lignin in polypropylene and recycled polypropylene. Polym Degrad Stab 89:553–558

    Article  Google Scholar 

  53. Liu X, Wang J, Li S et al (2014) Preparation and properties of UV-absorbent lignin graft copolymer films from lignocellulosic butanol residue. Ind Crops Prod 52:633–641

    Article  Google Scholar 

  54. Pouteau C, Dole P, Cathala B, Averous L, Boquillon N (2003) Antioxidant properties of lignin in polypropylene. Polym Degrad Stab 81:9–18

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of this work by TEKES, Forest Cluster, and TES is gratefully appreciated. The authors acknowledge Kari Kovasin and Metsä Fiber for their kind offer of BL samples. We thank Dr. Hendrik Wetzel (Fraunhofer IAP) for providing assistance with elemental analysis and DSC measurements and Myrtel Kåll (Aalto University) for her help with IC analysis. We also thank Dr Marc Borrega for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Sixta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Source 1 (PDF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekhina, M., Erdmann, J., Ebert, A. et al. Physico-chemical properties of fractionated softwood kraft lignin and its potential use as a bio-based component in blends with polyethylene. J Mater Sci 50, 6395–6406 (2015). https://doi.org/10.1007/s10853-015-9192-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9192-9

Keywords

Navigation