Skip to main content
Log in

Bromination of graphene with pentagonal, hexagonal zigzag and armchair, and heptagonal edges

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The bromination reactivity of azulene, naphthalene, and graphene with pentagonal, hexagonal zigzag and armchair, and heptagonal edges was theoretically estimated by density functional theory calculation and experimentally clarified by analyzing bromination of azulene and naphthalene using gas chromatography–mass spectrometry and ultraviolet–visible spectroscopy. The experimental and theoretical bromination reactivity of azulene with one pentagon and one heptagon was higher than that of naphthalene with two hexagons because of electron-rich carbon atoms on the pentagon. On the other hand, the tendency of theoretical bromination reactivity of pentagonal, hexagonal, and heptagonal edges on graphene was totally opposite to that on azulene and naphthalene. The order of the bromination reactivity of graphene edges was hexagonal zigzag > pentagonal > heptagonal and hexagonal armchair edges. The highest reactivity of hexagonal zigzag edges can be explained by the largest amount of electrons of carbon atoms among all of edges of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954–17961

    Article  Google Scholar 

  2. Jia X, Campos-Delgado J, Terrones M, Meunier V, Dresselhaus MS (2011) Graphene edges: a review of their fabrication and characterization. Nanoscale 3:86–95

    Article  Google Scholar 

  3. Xu Z, Zheng QS, Chen G (2007) Elementary building blocks of graphene-nanoribbon-based electronic devices. Appl Phys Lett 90:223115

    Article  Google Scholar 

  4. Boukhvalov DW, Katsnelson MI (2008) Chemical functionalization of graphene with defects. Nano Lett 8:4373–4379

    Article  Google Scholar 

  5. Seitsonen AP, Marco Saitta A, Wassmann T, Lazzeri M, Mauri F (2010) Structure and stability of graphene nanoribbons in oxygen, carbon dioxide, water, and ammonia. Phys Rev B 82:115425

    Article  Google Scholar 

  6. Son YW, Cohen ML, Louie SG (2006) Half-metallic graphene nanoribbons. Nature 444:347–349

    Article  Google Scholar 

  7. Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:216803

    Article  Google Scholar 

  8. Koskinen P, Malola S, Häkkinen H (2008) Self-passivating edge reconstructions of graphene. Phys Rev Lett 101:115502

    Article  Google Scholar 

  9. Wassmann T, Seitsonen AP, Marco Saitta A, Lazzeri M, Mauri F (2008) Structure, stability, edge states, and aromaticity of graphene ribbons. Phys Rev Lett 101:096402

    Article  Google Scholar 

  10. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162

    Article  Google Scholar 

  11. Harris PJF, Liu Z, Suenaga K (2008) Imaging the atomic structure of activated carbon. J Phys 20:362201

    Google Scholar 

  12. Pumera M, Scipioni R, Iwai H, Ohno T, Miyahara Y, Boero M (2009) A mechanism of adsorption of b-nicotinamide adenine dinucleotide on graphene sheets: experiment and theory. Chem Eur J 15:10851–10856

    Article  Google Scholar 

  13. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanal 22:1027–1036

    Article  Google Scholar 

  14. Cervantes-Sodi F, Csányi G, Piscanec S, Ferrari AC (2008) Edge-functionalized and substitutionally doped graphene nanoribbons: electronic and spin properties. Phys Rev B 77:165427

    Article  Google Scholar 

  15. Hod O, Barone V, Peralta JE, Scuseria GE (2007) Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Lett 7:2295–2299

    Article  Google Scholar 

  16. Yan Q, Huang B, Yu J, Zheng F, Zang J, Wu J, Gu BL, Liu F, Duan W (2007) Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett 7:1469–1473

    Article  Google Scholar 

  17. Jeon IY, Choi HJ, Choi M, Seo JM, Jung SM, Kim MJ, Zhang S, Zhang L, Xia Z, Dai L, Park N, Baek JB (2013) Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci Rep 3:1810

    Google Scholar 

  18. Jankovský O, Šimek P, Klimová K, Sedmidubský D, Matějková S, Pumera M, Sofer Z (2014) Towards graphene bromide: bromination of graphite oxide. Nanoscale 6:6065–6074

    Article  Google Scholar 

  19. Karlický F, Kumara Ramanatha Datta K, Otyepka M, Zbořil R (2013) Halogenated graphenes: rapidly growing family of graphene derivatives. ACS Nano 7:6434–6464

    Article  Google Scholar 

  20. Jankovský O, Šimek P, Sedmidubský D, Matějková S, Janoušek Z, Šembera F, Pumera M, Sofer Z (2014) Water-soluble highly fluorinated graphite oxide. RSC Adv 4:1378–1387

    Article  Google Scholar 

  21. Šimek P, Klimová K, Sedmidubský D, Jankovský O, Pumera M, Sofer Z (2015) Towards graphene iodide: iodination of graphite oxide. Nanoscale 7:261–270

    Article  Google Scholar 

  22. Poh HL, Šimek P, Sofer Z, Pumera M (2013) Halogenation of graphene with chlorine, bromine, or iodine by exfoliation in a halogen atmosphere. Chem Eur J 19:2655–2662

    Article  Google Scholar 

  23. Gopalakrishnan K, Subrahmanyam KS, Kumar P, Govindaraj A, Rao CNR (2012) Reversible chemical storage of halogens in few-layer graphene. RSC Adv 2:1605–1608

    Article  Google Scholar 

  24. Tan YZ, Yang B, Parvez K, Narita A, Osella S, Beljonne D, Feng X, Müllen K (2013) Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons. Nat Commun 4:2646

    Google Scholar 

  25. Zheng J, Liu HT, Wu B, Di CA, Guo YL, Wu T, Yu G, Liu YQ, Zhu DB (2012) Production of graphite chloride and bromide using microwave sparks. Sci Rep 2:662

    Google Scholar 

  26. Sibbel F, Matsui K, Segawa Y, Studer A, Itami K (2014) Selective synthesis of [7]- and [8]cycloparaphenylenes. Chem Commun 50:954–956

    Article  Google Scholar 

  27. Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473

    Article  Google Scholar 

  28. Han P, Akagi K, Federici Canova F, Mutoh H, Shiraki S, Iwaya K, Weiss PS, Asao N, Hitosugi T (2014) Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 8:9181–9187

    Article  Google Scholar 

  29. Vo TH, Shekhirev M, Kunkel DA, Orange F, Guinel MJF, Enders A, Sinitskii A (2014) Bottom-up solution synthesis of narrow nitrogen-doped graphene nanoribbons. Chem Commun 50:4172–4174

    Article  Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision D.01. Wallingford, Gaussian Inc.

    Google Scholar 

  31. Kim K, Coh S, Kisielowski C, Crommie MF, Louie SG, Cohen ML, Zettl A (2013) Atomically perfect torn graphene edges and their reversible reconstruction. Nat Commun 4:2723

    Google Scholar 

  32. Radovic LR, Suarez A, Vallejos-Burgos F, Sofo JO (2011) Oxygen migration on the graphene surface. 2. Thermochemistry of basal-plane diffusion (hopping). Carbon 49:4226–4238

    Article  Google Scholar 

  33. Mishra PC, Yadav A (2012) Polycyclic aromatic hydrocarbons as finite size models of graphene and graphene nanoribbons: enhanced electron density edge effect. Chem Phys 402:56–68

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Japan Interaction in Science and Technology Forum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Yamada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Yamada, Y., Fujita, R. et al. Bromination of graphene with pentagonal, hexagonal zigzag and armchair, and heptagonal edges. J Mater Sci 50, 5183–5190 (2015). https://doi.org/10.1007/s10853-015-9066-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9066-1

Keywords

Navigation