Skip to main content
Log in

In situ single-step reduction of bromine-intercalated graphite to covalently brominated and alkylated/brominated graphene

  • Article
  • Heterogeneity in 2D Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Developing easy and effective surface functionalization approaches has required to facilitate the processability of graphene while seeking novel application areas. Herein, an in situ single-step reductive covalent bromination of graphene has been reported for the first time. Highly brominated graphene flakes (>3% Br) were prepared by only subjecting the bromine-intercalated graphite flakes to a reduction reaction with reactive lithium naphthalide. The bromine-functionalized graphene was characterized by X-ray photoelectron spectroscopy and thermogravimetric analysis. Results revealed that Br2 molecules acted as both an intercalating agent for the graphite and a reactant for the surface functionalization of the graphene. After brominating, the remaining negative charges on the reduced graphene surface were further used for the dual surface functionalization of graphene with a long-chain alkyl group (∼1% dodecyl group addition). The functionalized graphenes were also characterized by Fourier transform infrared and Raman spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  2. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).

    Article  CAS  Google Scholar 

  3. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, and J.N. Coleman: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563 (2008).

    Article  CAS  Google Scholar 

  4. M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. McGovern, G.S. Duesberg, and J.N. Coleman: Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611 (2009).

    Article  CAS  Google Scholar 

  5. D.W. Johnson, B.P. Dobson, and K.S. Coleman: A manufacturing perspective on graphene dispersions. Curr. Opin. Colloid Interface Sci. 20, 367 (2015).

    Article  CAS  Google Scholar 

  6. K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S.E. O’Brien, E.K. McGuire, B.M. Sanchez, G.S. Duesberg, N. McEvoy, T.J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, and J.N. Coleman: Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624 (2014).

    Article  CAS  Google Scholar 

  7. K. Parvez, Z-S. Wu, R. Li, X. Liu, R. Graf, X. Feng, and K. Müllen: Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083 (2014).

    Article  CAS  Google Scholar 

  8. S.A. Hodge, M.K. Bayazit, K.S. Coleman, and M.S.P. Shaffer: Unweaving the rainbow: A review of the relationship between single-walled carbon nanotube molecular structures and their chemical reactivity. Chem. Soc. Rev. 41, 4409 (2012).

    Article  CAS  Google Scholar 

  9. M.K. Bayazit and K.S. Coleman: Probing the selectivity of azomethine imine cycloaddition to single-walled carbon nanotubes by resonance Raman spectroscopy. Chem. - Asian J. 7, 2925 (2012).

    Article  CAS  Google Scholar 

  10. M.K. Bayazit and J. Tang: Graphene production method WO/2019/110757, UCL Business PLC, UK, 2019. p. 46pp.

  11. M.K. Bayazit and K.S. Coleman: Ester-functionalized single-walled carbon nanotubes via addition of haloformates. J. Mater. Sci. 49, 5190 (2014).

    Article  CAS  Google Scholar 

  12. A.S. Jombert, M.K. Bayazit, C.R. Herron, K.S. Coleman, and D.A. Zeze: Synthesis and characterization of molecularly-bridged single-walled carbon nanotubes and electrical properties of their films. Sci. Adv. Mater. 5, 1967 (2013).

    Article  CAS  Google Scholar 

  13. M.K. Bayazit, A. Suri, and K.S. Coleman: Formylation of single-walled carbon nanotubes. Carbon 48, 3412 (2010).

    Article  CAS  Google Scholar 

  14. M.K. Bayazit, L.S. Clarke, K.S. Coleman, and N. Clarke: Pyridine-functionalized single-walled carbon nanotubes as gelators for poly(acrylic acid) hydrogels. J. Am. Chem. Soc. 132, 15814 (2010).

    Article  CAS  Google Scholar 

  15. M.K. Bayazit and K.S. Coleman: Fluorescent single-walled carbon nanotubes following the 1,3-dipolar cycloaddition of pyridinium ylides. J. Am. Chem. Soc. 131, 10670 (2009).

    Article  CAS  Google Scholar 

  16. G. Bottari, M.Á. Herranz, L. Wibmer, M. Volland, L. Rodríguez-Pérez, D.M. Guldi, A. Hirsch, N. Martín, F. D’Souza, and T. Torres: Chemical functionalization and characterization of graphene-based materials. Chem. Soc. Rev. 46, 4464 (2017).

    Article  CAS  Google Scholar 

  17. W.S. Hummers and R.E. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  18. K.R. Nandanapalli, D. Mudusu, and S. Lee: Functionalization of graphene layers and advancements in device applications. Carbon 152, 954 (2019).

    Article  CAS  Google Scholar 

  19. Z.B. Lei, J.T. Zhang, L.L. Zhang, N.A. Kumar, and X.S. Zhao: Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties. Energy Environ. Sci. 9, 1891 (2016).

    Article  CAS  Google Scholar 

  20. A. Narita, X.Y. Wang, X.L. Feng, and K. Mullen: New advances in nanographene chemistry. Chem. Soc. Rev. 44, 6616 (2015).

    Article  CAS  Google Scholar 

  21. J. Greenwood, T.H. Phan, Y. Fujita, Z. Li, O. Lvasenko, W. Vanderlinden, H. Van Gorp, W. Frederickx, G. Lu, K. Tahara, Y. Tobe, H. Uji-i, S.F.L. Mertens, and S. De Feyter: Covalent modification of graphene and graphite using diazonium chemistry: Tunable grafting and nanomanipulation. ACS Nano 9, 5520 (2015).

    Article  CAS  Google Scholar 

  22. G.L.C. Paulus, Q.H. Wang, and M.S. Strano: Covalent electron transfer chemistry of graphene with diazonium salts. Acc. Chem. Res. 46, 160 (2013).

    Article  CAS  Google Scholar 

  23. J.E. Johns and M.C. Hersam: Atomic covalent functionalization of graphene. Acc. Chem. Res. 46, 77 (2013).

    Article  CAS  Google Scholar 

  24. L.M. Dai: Functionalization of graphene for efficient energy conversion and storage. Acc. Chem. Res. 46, 31 (2013).

    Article  CAS  Google Scholar 

  25. T. Kuila, S. Bose, A.K. Mishra, P. Khanra, N.H. Kim, and J.H. Lee: Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 57, 1061 (2012).

    Article  CAS  Google Scholar 

  26. S. Niyogi, E. Bekyarova, J. Hong, S. Khizroev, C. Berger, W. de Heer, and R.C. Haddon: Covalent chemistry for graphene electronics. J. Phys. Chem. Lett. 2, 2487 (2011).

    Article  CAS  Google Scholar 

  27. M. Quintana, K. Spyrou, M. Grzelczak, W.R. Browne, P. Rudolf, and M. Prato: Functionalization of graphene via 1,3-dipolar cycloaddition. ACS Nano 4, 3527 (2010).

    Article  CAS  Google Scholar 

  28. E. Bekyarova, M.E. Itkis, P. Ramesh, C. Berger, M. Sprinkle, W.A. de Heer, and R.C. Haddon: Chemical modification of epitaxial graphene: Spontaneous grafting of aryl groups. J. Am. Chem. Soc. 131, 1336 (2009).

    Article  CAS  Google Scholar 

  29. V. Georgakilas: Covalent attachment of organic functional groups on pristine graphene. In Functionalization of Graphene, V. Georgakilas, ed. (Wiley, Germany 2014); p. 21.

    Chapter  Google Scholar 

  30. J.M. Englert, C. Dotzer, G.A. Yang, M. Schmid, C. Papp, J.M. Gottfried, H.P. Steinruck, E. Spiecker, F. Hauke, and A. Hirsch: Covalent bulk functionalization of graphene. Nat. Chem. 3, 279 (2011).

    Article  CAS  Google Scholar 

  31. Z. Jin, T.P. McNicholas, C.J. Shih, Q.H. Wang, G.L.C. Paulus, A. Hilmer, S. Shimizu, and M.S. Strano: Click chemistry on solution-dispersed graphene and monolayer CVD graphene. Chem. Mater. 23, 3362 (2011).

    Article  CAS  Google Scholar 

  32. F.M. Koehler, A. Jacobsen, K. Ensslin, C. Stampfer, and W.J. Stark: Selective chemical modification of graphene surfaces: Distinction between single- and bilayer graphene. Small 6, 1125 (2010).

    Article  CAS  Google Scholar 

  33. M. Fang, K.G. Wang, H.B. Lu, Y.L. Yang, and S. Nutt: Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 19, 7098 (2009).

    Article  CAS  Google Scholar 

  34. A.J. Clancy, M.K. Bayazit, S.A. Hodge, N.T. Skipper, C.A. Howard, and M.S.P. Shaffer: Charged carbon nanomaterials: Redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem. Rev. 118, 7363 (2018).

    Article  CAS  Google Scholar 

  35. A. Pénicaud and C. Drummond: Deconstructing graphite: Graphenide solutions. Acc. Chem. Res. 46, 129 (2013).

    Article  CAS  Google Scholar 

  36. R.A. Schäfer, J.M. Englert, P. Wehrfritz, W. Bauer, F. Hauke, T. Seyller, and A. Hirsch: On the way to graphane—Pronounced fluorescence of polyhydrogenated graphene. Angew. Chem., Int. Ed. 52, 754 (2013).

    Article  CAS  Google Scholar 

  37. K.C. Knirsch, J.M. Englert, C. Dotzer, F. Hauke, and A. Hirsch: Screening of the chemical reactivity of three different graphite sources using the formation of reductively alkylated graphene as a model reaction. Chem. Commun. 49, 10811 (2013).

    Article  CAS  Google Scholar 

  38. T. Morishita, A.J. Clancy, and M.S.P. Shaffer: Optimised exfoliation conditions enhance isolation and solubility of grafted graphenes from graphite intercalation compounds. J. Mater. Chem. A 2, 15022 (2014).

    Article  CAS  Google Scholar 

  39. F. Hof, R.A. Schäfer, C. Weiss, F. Hauke, and A. Hirsch: Novel λ3-iodane-based functionalization of synthetic carbon allotropes (SCAs)—Common concepts and quantification of the degree of addition. Chem. Eur J. 20, 16644 (2014).

    Article  CAS  Google Scholar 

  40. D. Voiry, O. Roubeau, and A. Pénicaud: Stoichiometric control of single walled carbon nanotubes functionalization. J. Mater. Chem. 20, 4385 (2010).

    Article  CAS  Google Scholar 

  41. A.J. Clancy, P. Sirisinudomkit, D.B. Anthony, A.Z. Thong, J.L. Greenfield, M.K. Salaken Singh, and M.S.P. Shaffer: Real-time mechanistic study of carbon nanotube anion functionalisation through open circuit voltammetry. Chem. Sci. 10, 3300 (2019).

    Article  CAS  Google Scholar 

  42. H. Au, N. Rubio, and M.S.P. Shaffer: Brominated graphene as a versatile precursor for multifunctional grafting. Chem. Sci. 9, 209 (2018).

    Article  CAS  Google Scholar 

  43. O. Jankovský, P. Šimek, K. Klimová, D. Sedmidubský, S. Matějková, M. Pumera, and Z. Sofer: Towards graphene bromide: Bromination of graphite oxide. Nanoscale 6, 6065 (2014).

    Article  Google Scholar 

  44. M.S. Dresselhaus and G. Dresselhaus: Intercalation compounds of graphite. Adv. Phys. 51, 1 (2002).

    Article  CAS  Google Scholar 

  45. P.C. Eklund, N. Kambe, G. Dresselhaus, and M.S. Dresselhaus: In-plane intercalate lattice modes in graphite-bromine using Raman spectroscopy. Phys. Rev. B 18, 7069 (1978).

    Article  CAS  Google Scholar 

  46. C. Underhill, S.Y. Leung, G. Dresselhaus, and M.S. Dresselhaus: Infrared and Raman spectroscopy of graphite-ferric chloride. Solid State Commun. 29, 769 (1979).

    Article  CAS  Google Scholar 

  47. J. Xu, Y. Dou, Z. Wei, J. Ma, Y. Deng, Y. Li, H. Liu, and S. Dou: Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Adv. Sci. 4, 1700146 (2017).

    Article  CAS  Google Scholar 

  48. J. Zou, C. Sole, N.E. Drewett, M. Velický, and L.J. Hardwick: In situ study of Li intercalation into highly crystalline graphitic flakes of varying thicknesses. J. Phys. Chem. Lett. 7, 4291 (2016).

    Article  CAS  Google Scholar 

  49. T. Sasa, Y. Takahashi, and T. Mukaibo: Crystal structure of graphite bromine lamellar compounds. Carbon 9, 407 (1971).

    Article  CAS  Google Scholar 

  50. W.T. Eeles, J.A. Turnbull, and L. Rotherham: The crystal structure of graphite-bromine compounds. Proc. R. Soc. London, Ser. A 283, 179 (1965).

    Article  CAS  Google Scholar 

  51. S. Pekker, J.P. Salvetat, E. Jakab, J.M. Bonard, and L. Forró: Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J. Phys. Chem. B 105, 7938 (2001).

    Article  CAS  Google Scholar 

  52. K. Nemeth, E. Jakab, F. Borondics, H.M. Tóháti, Á. Pekker, M. Bokor, T. Verebélyi, K. Tompa, S. Pekker, and K. Kamarás: Breakdown of diameter selectivity in a reductive hydrogenation reaction of single-walled carbon nanotubes. Chem. Phys. Lett. 618, 214 (2015).

    Article  CAS  Google Scholar 

  53. A.C. Ferrari and D.M. Basko: Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235 (2013).

    Article  CAS  Google Scholar 

  54. G. Das, B.J. Park, J. Kim, D. Kang, and H.H. Yoon: Quaternized cellulose and graphene oxide crosslinked polyphenylene oxide based anion exchange membrane. Sci. Rep. 9, 9572 (2019).

    Article  CAS  Google Scholar 

  55. J.S. Culik and D.D.L. Chung: Thermal gravimetric analysis of graphite-bromine compounds. Mater. Sci. Eng. 44, 129 (1980).

    Article  CAS  Google Scholar 

  56. M.K. Bayazit, S.A. Hodge, A.J. Clancy, R. Menzel, S. Chen, and M.S.P. Shaffer: Carbon nanotube anions for the preparation of gold nanoparticle–nanocarbon hybrids. Chem. Commun. 52, 1934 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Sabanci University Nanotechnology Research and Application Center (I.A.SN-19-00004) for research funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Kemal Bayazit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayazit, M.K. In situ single-step reduction of bromine-intercalated graphite to covalently brominated and alkylated/brominated graphene. Journal of Materials Research 35, 1472–1480 (2020). https://doi.org/10.1557/jmr.2020.112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.112

Navigation