Skip to main content
Log in

Deformation and fracture behaviour of electroplated Sn–Bi/Cu solder joints

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work utilizes the lap shear test to investigate the shear strength and fracture behaviour of electroplated and reflowed Sn–Bi/Cu lead-free solder joints. Particular emphasis is given on the effects of reflow temperature on the interrelationships among the interfacial intermetallic compound (IMC) morphology, shear strength and the fracture mechanism of the solder joints. Single-lap shear specimens are prepared by joining two commercially pure Cu substrates with electroplated Sn–Bi solder of about 50 µm thickness. The geometry of the lap shear specimen is designed to minimize the differences between far-field and actual responses of the solder. Three reflow temperatures (200, 230 and 260 °C) are used to investigate the effects of reflow temperature on the microstructure and shear strength of the solder. The specimens are loaded to failure at a strain rate of 4 × 10−4/s. Elemental mapping of the fracture surface is performed with field emission scanning electron microscope coupled with energy dispersive X-ray spectroscopy. A reflow temperature of 200 °C yields prism-like interfacial IMC morphology, while higher reflow temperatures of 230 and 260 °C yield scallop-like interfacial IMC morphology. The shear strength and elastic energy release, U, of the solder joints increase with increasing reflow temperature. Fractographs of the failed joints suggest that the fracture mechanism is dependent on the interfacial IMC morphology, where solder joints with prism-like interfacial IMC fail within the bulk solder and solder joints with scallop-like interfacial IMC failed with a mixture of bulk and interfacial fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Miao HW, Duh JG, Chiou BS (2000) Thermal cycling test in Sn–Bi and Sn–Bi–Cu solder joints. J Mater Sci Mater Electron 11(8):609–618. doi:10.1023/A:1008928729212

    Article  Google Scholar 

  2. Tomlinson WJ, Fullylove A (1992) Strength of tin-based soldered joints. J Mater Sci 27(21):5777–5782. doi:10.1007/Bf01119737

    Article  Google Scholar 

  3. Yang LM, Zhang QK, Zhang ZF (2012) Effects of solder dimension on the interfacial shear strength and fracture behaviors of Cu/Sn–3Cu/Cu joints. Scr Mater 67(7–8):637–640. doi:10.1016/j.scriptamat.2012.07.024

    Article  Google Scholar 

  4. Deng X, Sidhu RS, Johnson P, Chawla N (2005) Influence of reflow and thermal aging on the shear strength and fracture behavior of Sn–3.5Ag Solder/Cu joints. Metall Mater Trans A 36A(1):55–64. doi:10.1007/s11661-005-0138-8

    Article  Google Scholar 

  5. Suh MS, Park CJ, Kwon HS (2008) Growth kinetics of Cu-Sn intermetallic compounds at the interface of a Cu substrate and 42Sn–58Bi electrodeposits, and the influence of the intermetallic compounds on the shear resistance of solder joints. Mater Chem Phys 110(1):95–99. doi:10.1016/j.matchemphys.2008.01.021

    Article  Google Scholar 

  6. Felton LE, Raeder CH, Knorr DB (1993) The properties of tin–bismuth alloy solders. JOM 45(7):28–32

    Article  Google Scholar 

  7. Raeder CH, Felton LE, Tanzi VA, Knorr DB (1994) The effect of aging on microstructure, room-temperature deformation, and fracture of Sn–Bi/Cu solder joints. J Electron Mater 23(7):611–617. doi:10.1007/Bf02653346

    Article  Google Scholar 

  8. Raeder CH, Mitlin D, Messler RW (1998) Modelling the creep rates of eutectic Bi–Sn solder using the data from its constitutive phases. J Mater Sci 33(18):4503–4508. doi:10.1023/A:1004439931547

    Article  Google Scholar 

  9. Shen YL, Chawla N, Ege ES, Deng X (2005) Deformation analysis of lap-shear testing of solder joints. Acta Mater 53(9):2633–2642. doi:10.1016/j.actamat.2005.02.024

    Article  Google Scholar 

  10. Nai SML, Wei J, Gupta M (2009) Interfacial intermetallic growth and shear strength of lead-free composite solder joints. J Alloy Compd 473(1–2):100–106. doi:10.1016/j.jallcom.2008.05.070

    Article  Google Scholar 

  11. Roh M-H, Jung JP, Kim W (2014) Microstructure, shear strength, and nanoindentation property of electroplated Sn–Bi micro-bumps. Microelectron Reliab 54(1):265–271. doi:10.1016/j.microrel.2013.09.016

    Article  Google Scholar 

  12. Goh Y, Haseeb ASMA, Sabri MFM (2013) Electrodeposition of lead-free solder alloys. Solder Surf Mt Technol 25(2):76–90. doi:10.1108/09540911311309031

    Article  Google Scholar 

  13. Zhang L, Tu KN (2014) Structure and properties of lead-free solders bearing micro and nano particles. Mater Sci Eng 82:1–32. doi:10.1016/j.mser.2014.06.001

    Article  Google Scholar 

  14. Goh Y, Lee SF, Haseeb ASMA (2013) Formation of Sn–Bi solder alloys by sequential electrodeposition and reflow. J Mater Sci Mater Electron 24(6):2052–2057. doi:10.1007/s10854-012-1055-4

    Article  Google Scholar 

  15. Shen L, Septiwerdani P, Chen Z (2012) Elastic modulus, hardness and creep performance of SnBi alloys using nanoindentation. Mat Sci Eng A 558:253–258. doi:10.1016/j.msea.2012.07.120

    Article  Google Scholar 

  16. Peng Y, Deng K (2015) Study on the mechanical properties of the novel Sn–Bi/Graphene nanocomposite by finite element simulation. J Alloys Compd 625:44–51. doi:10.1016/j.jallcom.2014.11.110

    Article  Google Scholar 

  17. Goh Y, Haseeb ASMA, Sabri MFM (2013) Effects of hydroquinone and gelatin on the electrodeposition of Sn–Bi low temperature Pb-free solder. Electrochim Acta 90:265–273. doi:10.1016/j.electacta.2012.12.036

    Article  Google Scholar 

  18. D1002-10 AS (2010) Standard test method for apparent shear strength of single-lap-joint adhesively bonded metal specimens by tension loading (metal-to-metal). ASTM International, West Conshohocken. doi: 10.1520/d1002-10

  19. Siewert TA, Handwerker CA (2002) Test procedures for developing solder data. Vol 960-8. National Institute of Standards and Technology, Washington

    Google Scholar 

  20. Gu LY, Qu L, Ma HT, Luo ZB, Wang L (2011) Effects of soldering temperature and cooling rate on the as-soldered microstructures of intermetallic compounds in Sn–Ag/Cu joint. 2011 12th international conference on electronic packaging technology and high density packaging (Icept–Hdp), pp 342–345

  21. Laurila T, Vuorinen V, Kivilahti JK (2005) Interfacial reactions between lead-free solders and common base materials. Mat Sci Eng R 49(1–2):1–60. doi:10.1016/j.mser.2005.03.001

    Article  Google Scholar 

  22. Yang M, Li M, Wang L, Fu Y, Kim J, Weng L (2010) Cu6Sn5 morphology transition and its effect on mechanical properties of eutectic Sn–Ag solder joints. J Electron Mater 40(2):176–188. doi:10.1007/s11664-010-1430-y

    Article  Google Scholar 

  23. Broek D (1996) Elementary engineering fracture mechanics. Kluwer, Dordrecht

    Google Scholar 

  24. Tu PL, Chan YC, Lai JKL (1997) Effect of intermetallic compounds on the thermal fatigue of surface mount solder joints. IEEE Trans Compon Packag B 20(1):87–93. doi:10.1109/96.554534

    Article  Google Scholar 

  25. Huang ML, Wu CML, Lai JKL, Chan YC (2000) Microstructural evolution of a lead-free solder alloy Sn–Bi–Ag–Cu prepared by mechanical alloying during thermal shock and aging. J Electron Mater 29(8):1021–1026. doi:10.1007/s11664-000-0167-4

    Article  Google Scholar 

  26. Felton L, Raeder C, Knorr D (1993) The properties of tin–bismuth alloy solders. JOM 45(7):28–32. doi:10.1007/bf03222377

    Article  Google Scholar 

  27. Miyazawa Y, Ariga T (1999) Microstructural change and hardness of lead free solder alloys. In: First international symposium on environmentally conscious design and inverse manufacturing (EcoDesign ’99), Tokyo, Japan. IEEE, pp 616–619

Download references

Acknowledgement

This research is financially supported by the University of Malaya High Impact Research Grant (HIRG) No. UM.C/HIR/MOHE/ENG/26 (D000026-16001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxin Goh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goh, Y., Haseeb, A.S.M.A., Liew, H.L. et al. Deformation and fracture behaviour of electroplated Sn–Bi/Cu solder joints. J Mater Sci 50, 4258–4269 (2015). https://doi.org/10.1007/s10853-015-8978-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8978-0

Keywords

Navigation