Skip to main content
Log in

Phase-field modeling of the influence of domain structures on the electrocaloric effects in PbTiO3 thin films

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A phase-field model has been developed to study the influence of epitaxial strains and domain structures on the electrocaloric effects (ECEs) in PbTiO3 (PTO) thin films. The simulated domain-switching dynamics obtained from the proposed model was tallied with the existing experimental results. In the case of single-domain PTO thin film, the ECE gradually increased with the increasing epitaxial strain, whereas, in the case of poly-domain PTO thin film, the influence of epitaxial strain on ECE can be divided into three regions of stable domain structures, i.e., c-domains, a/c-domains, and a-domains regions. It is worth noting that the maximum ECE occurred under a tensile epitaxial strain in the a/c-domains region, which was the consequence of the competition between the enhancement of ECE and the reduction of c-domains volume fraction, both caused by the increasing tensile epitaxial strain. Although the change of temperature arising from the ECE may not be large enough to be viable for practical applications, it does illustrate the important influence of domain structures on the ECEs of thin films, which has not gained much attention of most researchers whose focus is still on single-domain thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Childress JD (2004) Application of a ferroelectric material in an energy conversion device. J Appl Phys 33:1793–1798

    Article  Google Scholar 

  2. Zhang J, Alpay SP, Rossetti GA (2011) Influence of thermal stresses on the electrocaloric properties of ferroelectric films. Appl Phys Lett 98:132907

    Article  Google Scholar 

  3. Zhang X, Wang JB, Li B, Zhong XL, Lou XJ, Zhou YC (2011) Sizable electrocaloric effect in a wide temperature range tuned by tensile misfit strain in BaTiO3 thin films. J Appl Phys 109:126102

    Article  Google Scholar 

  4. Thacher PD (2003) Electrocaloric effects in some ferroelectric and antiferroelectric Pb (Zr, Ti) O3 compounds. J Appl Phys 39:1996–2002

    Article  Google Scholar 

  5. Fatuzzo E, Kiess H, Nitsche R (2004) Theoretical efficiency of pyroelectric power converters. J Appl Phys 37:510–516

    Article  Google Scholar 

  6. Tuttle BA, Payne DA (1981) The effects of microstructure on the electrocaloric properties of Pb (Zr, Sn, Ti) O3 ceramics. Ferroelectrics 37:603–606

    Article  Google Scholar 

  7. Mischenko AS, Zhang Q, Scott JF, Whatmore RW, Mathur ND (2006) Giant electrocaloric effect in thin-film PbZr0. 95Ti0. 05O3. Science 311:1270–1271

    Article  Google Scholar 

  8. Neese B, Chu B, Lu S-G, Wang Y, Furman E, Zhang Q (2008) Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321:821–823

    Article  Google Scholar 

  9. Akcay G, Alpay SP, Rossetti GA Jr, Scott JF (2008) Influence of mechanical boundary conditions on the electrocaloric properties of ferroelectric thin films. J Appl Phys 103:024104

    Article  Google Scholar 

  10. Karthik J, Martin LW (2011) Effect of domain walls on the electrocaloric properties of Pb (Zr1–x, Tix) O3 thin films. Appl Phys Lett 99:032904

    Article  Google Scholar 

  11. Qiu JH, Jiang Q (2009) Grain size effect on the electrocaloric effect of dense BaTiO 3 nanoceramics. J Appl Phys 105:034110

    Article  Google Scholar 

  12. Sheng G, Zhang JX, Li YL et al (2008) Domain stability of PbTiO3 thin films under anisotropic misfit strains: phase-field simulations. J Appl Phys 104:054105

    Article  Google Scholar 

  13. Chen L-Q (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32:113–140

    Article  Google Scholar 

  14. Chen LQ (2008) Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review. J Am Ceram Soc 91:1835–1844

    Article  Google Scholar 

  15. Li YL, Hu SY, Liu ZK, Chen LQ (2001) Phase-field model of domain structures in ferroelectric thin films. Appl Phys Lett 78:3878–3880

    Article  Google Scholar 

  16. Moelans N, Blanpain B, Wollants P (2008) An introduction to phase-field modeling of microstructure evolution. Calphad 32:268–294

    Article  Google Scholar 

  17. Alpay S, Nagarajan V, Rossetti G (2009) Recent developments in ferroelectric nanostructures and multilayers. J Mater Sci 44:5021–5024

    Article  Google Scholar 

  18. Valant M, Axelsson A-K, Le Goupil F, Alford NM (2012) Electrocaloric temperature change constrained by the dielectric strength. Mater Chem Phys 136:277–280

    Article  Google Scholar 

  19. Li B, Wang JB, Zhong XL, Wang F, Zeng YK, Zhou YC (2013) The coexistence of the negative and positive electrocaloric effect in ferroelectric thin films for solid-state refrigeration. EPL 102:47004

    Article  Google Scholar 

  20. Li B, Wang JB, Zhong XL, Wang F, Zhou YC (2010) Room temperature electrocaloric effect on PbZr0. 8Ti0. 2O3 thin film. J Appl Phys 107:014109

    Article  Google Scholar 

  21. Wang YU, Jin YM, Khachaturyan AG (2003) Phase field microelasticity modeling of dislocation dynamics near free surface and in heteroepitaxial thin films. Acta Mater 51:4209–4223

    Article  Google Scholar 

  22. Li YL, Hu SY, Liu ZK, Chen LQ (2002) Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater 50:395–411

    Article  Google Scholar 

  23. Wang YU, Jin YM, Khachaturyan AG (2002) Phase field microelasticity theory and simulation of multiple voids and cracks in single crystals and polycrystals under applied stress. J Appl Phys 91:6435–6451

    Article  Google Scholar 

  24. Wang YU, Jin YM, Khachaturyan AG (2002) Phase field microelasticity theory and modeling of elastically and structurally inhomogeneous solid. J Appl Phys 92:1351–1360

    Article  Google Scholar 

  25. Wang YU, Jin YM, Khachaturyan AG (2004) Phase field microelasticity modeling of surface instability of heteroepitaxial thin films. Acta Mater 52:81–92

    Article  Google Scholar 

  26. Parui J, Krupanidhi SB (2008) Electrocaloric effect in antiferroelectric PbZrO3 thin films. Phys Status Solidi (RRL) 2:230–232

    Article  Google Scholar 

  27. Saranya D, Chaudhuri AR, Parui J, Krupanidhi S (2009) Electrocaloric effect of PMN-PT thin films near morphotropic phase boundary. Bull Mater Sci 32:259–262

    Article  Google Scholar 

  28. Hao X, Yue Z, Xu J, An S, Nan C-W (2011) Energy-storage performance and electrocaloric effect in (100)-oriented Pb0. 97La0. 02 (Zr0. 95Ti0. 05) O3 antiferroelectric thick films. J Appl Phys 110:064109

    Article  Google Scholar 

  29. Li YL, Cross LE, Chen LQ (2005) A phenomenological thermodynamic potential for BaTiO 3 single crystals. J Appl Phys 98:064101

    Article  Google Scholar 

  30. Li YL, Hu SY, Liu ZK, Chen LQ (2002) Effect of electrical boundary conditions on ferroelectric domain structures in thin films. Appl Phys Lett 81:427–429

    Article  Google Scholar 

  31. Li YL, Chen LQ, Asayama G, Schlom DG, Zurbuchen MA, Streiffer SK (2004) Ferroelectric domain structures in SrBi2Nb2O9 epitaxial thin films: electron microscopy and phase-field simulations. J Appl Phys 95:6332–6340

    Article  Google Scholar 

  32. Khachaturyan AG (1983) Theory of structural transformations in solids. Wiley, New York

    Google Scholar 

  33. Haun MJ, Furman E, Jang SJ, McKinstry HA, Cross LE (1987) Thermodynamic theory of PbTiO3. J Appl Phys 62:3331–3338

    Article  Google Scholar 

  34. Pertsev NA, Zembilgotov AG, Tagantsev AK (1998) Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys Rev Lett 80:1988

    Article  Google Scholar 

  35. Zhang J, Heitmann AA, Alpay SP, Rossetti GA Jr (2009) Electrothermal properties of perovskite ferroelectric films. J Mater Sci 44:5263–5273. doi:10.1007/s10853-009-3559-8

    Article  Google Scholar 

  36. Mikhaleva EA, Flerov IN, Gorev MV et al (2012) Caloric characteristics of PbTiO3 in the temperature range of the ferroelectric phase transition. Phys Solid State 54:1832–1840

    Article  Google Scholar 

  37. Chen LQ, Shen J (1998) Applications of semi-implicit Fourier-spectral method to phase field equations. Comput Phys Commun 108:147–158

    Article  Google Scholar 

  38. Kim YK, Kim SS, Shin H, Baik S (2004) Thickness effect of ferroelectric domain switching in epitaxial PbTiO 3 thin films on Pt (001)/MgO (001). Appl Phys Lett 84:5085–5087

    Article  Google Scholar 

  39. Kim YK, Lee K, Baik S (2004) Domain structure of epitaxial PbTiO 3 thin films on Pt (001)/MgO (001) substrates. J Appl Phys 95:236–240

    Article  Google Scholar 

  40. Janolin P-E (2009) Strain on ferroelectric thin films. J Mater Sci 44:5025–5048. doi:10.1007/s10853-009-3553-1

    Article  Google Scholar 

  41. Qiu Q, Nagarajan V, Alpay S (2008) Film thickness versus misfit strain phase diagrams for epitaxial PbTiO 3 ultrathin ferroelectric films. Phys Rev B 78:064117

    Article  Google Scholar 

  42. Qiu Q, Mahjoub R, Alpay S, Nagarajan V (2010) Misfit strain–film thickness phase diagrams and related electromechanical properties of epitaxial ultra-thin lead zirconate titanate films. Acta Mater 58:823–835

    Article  Google Scholar 

  43. Choudhury S, Chen LQ, Li YL (2007) Correlation between number of ferroelectric variants and coercive field of lead ziconate titanate single crystals. Appl Phys Lett 91:032902

    Article  Google Scholar 

  44. Hong S, Colla EL, Kim E et al (1999) High resolution study of domain nucleation and growth during polarization switching in Pb (Zr, Ti) O3 ferroelectric thin film capacitors. J Appl Phys 86:607–613

    Article  Google Scholar 

  45. Ponomareva I, Lisenkov S (2012) Bridging the macroscopic and atomistic descriptions of the electrocaloric effect. Phys Rev Lett 108:167604

    Article  Google Scholar 

  46. Kesim M, Zhang J, Alpay S, Martin L (2014) Enhanced electrocaloric and pyroelectric response from ferroelectric multilayers. Appl Phys Lett 105:052901

    Article  Google Scholar 

  47. Li Y, Hu S, Tenne D et al (2007) Prediction of ferroelectricity in BaTiO3/SrTiO3 superlattices with domains. Appl Phys Lett 91:112914

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the eScience Grant (Project No.: 06-02-10-SF0195) provided by the Ministry of Science, Technology and Innovation (MOSTI), Malaysia, as well as the Advanced Engineering Programme and School of Engineering, Monash University Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai Kah Soh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.Y., Soh, A.K., Chen, H.T. et al. Phase-field modeling of the influence of domain structures on the electrocaloric effects in PbTiO3 thin films. J Mater Sci 50, 1382–1393 (2015). https://doi.org/10.1007/s10853-014-8698-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8698-x

Keywords

Navigation