Skip to main content
Log in

Novel hybrid solar cells based on α-copper phthalocyanine–cadmium sulfide planar heterojunction

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cadmium sulfide (CdS) has been employed as an alternative acceptor for planar heterojunction solar cell based on copper phthalocyanine (CuPc). Spin-coated poly-3,4-ethylenedioxythiophene:polystyrenesulfonate (PEDOT:PSS) on indium tin oxide (ITO)-coated glass substrates was used for the vacuum deposition of CuPc and CdS planar heterojunction. In the present study, we have fabricated two different architectures of CuPc/CdS devices: (1) ITO/PEDOT:PSS/CuPc/CdS/Al and (2) ITO/PEDOT:PSS/CuPc/CdS/LiF/Al. Our results indicate that the CdS could effectively facilitate charge transport in the nanostructured network, and be a good acceptor. The fabricated bare CuPc/CdS device shows 0.13 % conversion efficiency while incorporation of LiF layer between CuPc/CdS and Al contact facilitates low-recombination rate results ~43 % enhancement in efficiency. The ITO/PEDOT:PSS/CuPc/CdS/LiF/Al device shows 0.30 % power conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li G, Shrotriya V, Huang JS, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868

    Article  Google Scholar 

  2. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258:1474–1476

    Article  Google Scholar 

  3. Dou L, You J, Yang J, Chen CC, He Y, Murase S, Moriarty T, Emery K, Li G, Yang Y (2012) Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat Photonics 6:180–185

    Article  Google Scholar 

  4. Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photonics 6:153–161

    Article  Google Scholar 

  5. Krebs FC (2008) Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes. Sol Energy Mater Sol Cells 92:715–726

    Article  Google Scholar 

  6. White MS, Olson DC, Shaheen SE, Kopidakis N, Ginley DS (2009) Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl Phys Lett 89:143517–143519

    Article  Google Scholar 

  7. Sonar P, Lim JPF, Chan KL (2011) Organic non-fullerene acceptors for organic photovoltaics. Energy Environ Sci 4:1558–1574

    Article  Google Scholar 

  8. Mali SS, Dalavi DS, Bhosale PN, Betty CA, Chauhan AK, Patil PS (2012) Electro-optical properties of copper phthalocyanines (CuPc) vacuum deposited thin films. RSC Adv 2:2100–2104

    Article  Google Scholar 

  9. Peumans P, Bulovic V, Forrest SR (2000) Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Appl Phys Lett 76:2650–2652

    Article  Google Scholar 

  10. Yakimov A, Forrest SR (2002) High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters. Appl Phys Lett 80:1667–1669

    Article  Google Scholar 

  11. Xue J, Uchida S, Rand BP, Forrest SR (2004) 4.2 % efficient organic photovoltaic cells with low series resistances. Appl Phys Lett 84:3013–3015

    Article  Google Scholar 

  12. Uchida S, Xue J, Rand BP, Forrest SR (2004) Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C60 active layer. Appl Phys Lett 84:4218–4220

    Article  Google Scholar 

  13. Arco LGD, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865–2873

    Article  Google Scholar 

  14. Pradhan B, Pal AJ (2004) Organic heterojunction photovoltaic cells: role of functional groups in electron acceptor materials. Sol Energy Mater Sol Cells 81:469–476

    Article  Google Scholar 

  15. Sonar P, Ng GM, Lin TT, Dodabalapur A, Chen ZK (2010) Solution Processable Low band gap diketopyrrolopyrrole (DPP) based derivatives: novel acceptors for organic solar Cells. J Mater Chem 20:3626–3636

    Article  Google Scholar 

  16. He Z, Zhao G, Han G (2006) Optical and photoelectric properties of copper phthalocyanine/cadmium sulphide multilayer films prepared by vacuum sublimation. Phys Status Solidi (a) 203:518–525

    Article  Google Scholar 

  17. Smertenko PS, Kostylev VP, Kislyuk VV, Syngaevsky AF, Zynio SA, Dimitriev OP (2008) Photovoltaic cells based on cadmium sulphide–phthalocyanine heterojunction. Sol Energy Mater Sol Cells 92:976–979

    Article  Google Scholar 

  18. Lee JC, Lee W, Han SH, Kim TG, Sung YM (2009) Synthesis of hybrid solar cells using CdS nanowire array grown on conductive glass substrates. Electrochem Commun 11:231–234

    Article  Google Scholar 

  19. Greaney MJ, Das S, Webber DH, Bradforth SE, Brutchey RL (2012) Improving open circuit potential in hybrid P3HT:CdSe bulk heterojunction solar cells via colloidal tert-butylthiol ligand exchange. ACS Nano 6:4222–4230

    Article  Google Scholar 

  20. Wang L, Zhao D, Su Z, Li B, Zhang Z, Shen D (2011) Enhanced efficiency of polymer/ZnO nanorods hybrid solar cell sensitized by CdS quantum dots. J Electrochem Soc 158:H804–H807

    Article  Google Scholar 

  21. Brandenburg JE, Jin X, Kruszynska M, Ohland J, Kolny-Olesiak J, Riedel I, Borchert H, Parisi J (2011) Influence of particle size in hybrid solar cells composed of CdSe nanocrystals and poly(3-hexylthiophene). J Appl Phys 110:064509–064518

    Article  Google Scholar 

  22. Liu X, Jiang Y, Lan X, Zhang Y, Liu C, Li J, Wang B, Yu Y, Wang W (2012) Improved efficiency of hybrid solar cell based on thiols-passivated CdS quantum dots and poly(3-hexythiophene). Phys Status Solidi A 209:1583–1587

    Article  Google Scholar 

  23. Kang Y, Kim D (2006) Well-aligned CdS nanorod/conjugated polymer solar cells. Sol Energy Mater Sol Cells 90:166–174

    Article  Google Scholar 

  24. Senthilarasu S, Sathyamoorthy R, Lee SH, Velumani S (2010) Characterization of zinc–phthalocyanine–CdS composite thin films for photovoltaic applications. Vacuum 84:1212–1215

    Article  Google Scholar 

  25. Loutfy RO (1982) Photoconduction of phthalocyanines in the near-infrared. J Phys Chem 86:3302–3306

    Article  Google Scholar 

  26. Edwards L, Gouterman M (1970) Porphyrins XV. Vapor absorption spectra and stability: phthalocyanines. J Mol Spectrosc 33:292–310

    Article  Google Scholar 

  27. Tsidilkovsk IM (1982) Band structure of semiconductors. Pergamon Press, Oxford

    Google Scholar 

  28. Kamoun N, Bouzouita H, Rezig B (2007) Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique. Thin Solid Films 515:5949–5952

    Article  Google Scholar 

  29. Mali SS, Kim HJ, Kim JH, Patil PS, Hong CK (2013) Synthesis and characterization of planar heterojunction hybrid polymer solar cells based on copper phthalocyanine (CuPc) and titanium dioxide. Ceram Int 40:643–649

    Article  Google Scholar 

  30. Lozzi L, Ottaviano L, Santucci S (2002) Growth and electronic structure of CuFPc on Si(100). Surf Sci 507–510:351–356

    Article  Google Scholar 

  31. van der Laan G, Westra C, Haas C, Sawatzky GA (1981) Satellite structure in photoelectron and Auger spectra of copper dihalides. Phys Rev B 23:4369–4380

    Article  Google Scholar 

  32. Vanalakar SA, Mali SS, Pawar RC, Tarwal NL, Moholkar AV, Kim JA, Kwon YB, Kim JH, Patil PS (2011) Synthesis and characterization of Ru doped CuO thin films for supercapacitor based on Bronsted acidic ionic liquid. Electrochim Acta 56:2762–2768

    Article  Google Scholar 

  33. Mali SS, Devan RS, Ma YR, Betty CA, Bhosale PN, Panmande RP, Kale BB, Jadkar SR, Patil PS (2012) Effective light harvesting in CdS nanoparticle-sensitized rutile TiO2 microspheres. Electrochim Acta 90:666–672

    Article  Google Scholar 

  34. Shi SJ, Tu JP, Tang YY, Zhang YQ, Liu XY, Gu CD (2013) Enhanced electrochemical performance of LiF-modified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J Power Sources 225:338–346

    Article  Google Scholar 

  35. Mihailetchi VD, Blom PWM, Hummelen JC, Rispens MT (2003) Cathode dependence of the open-circuit voltage of polymer: fullerene bulk heterojunction solar cells. J Appl Phys 94:6849–6854

    Article  Google Scholar 

  36. Sze SM (1992) Physics of semiconductor devices, vol 258. Wiley Sciences, New York, p 1474

    Google Scholar 

  37. Komolova AS, Møller PJ (2003) Photoconductivity and oxygen adsorption of Cu-phthalocyanine thin films on cadmium sulphide surfaces. Appl Surf Sci 212–213:497–500

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2009-0094055).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sawanta S. Mali or Chang Kook Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mali, S.S., Patil, P.S., Bhosale, P.N. et al. Novel hybrid solar cells based on α-copper phthalocyanine–cadmium sulfide planar heterojunction. J Mater Sci 49, 5100–5111 (2014). https://doi.org/10.1007/s10853-014-8218-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8218-z

Keywords

Navigation