Skip to main content
Log in

Fullerene-modified polyamide 6 by in situ anionic polymerization in the presence of PCBM

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Activated anionic ring-opening polymerization of ε-caprolactam (ECL) was carried out for the first time in the presence of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) to prepare polyamide 6 (PA6)-based composites comprising up to 3 wt% of this fullerene derivative. This in situ polymerization process produced high molecular weight composites containing 52–80 % of gel fraction at PCBM concentration ≥0.5 wt%. Spectral, thermo-mechanical, synchrotron X-ray, and scanning electron microscopy data were used to elucidate the structure and morphology of the PA6/PCBM composites. A mechanism of the chemical structure evolution was proposed starting with incipient complexation between ECL and PCBM, via subsequent chemical linking of ECL moieties on the C60 spheroid and final formation of star-burst and cross-linked morphologies. PCBM amounts of 0.1 wt% and more decreased the volume resistivity from 1012 Ω cm (neat PA6) to 109–107 Ω cm, thus opening the way for new applications of anionic PA6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Vanlaeke P, Swinnen A, Haeldermans I, Vanhoyland G, Aernouts T, Cheyns T, Deibel C et al (2006) P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics. Sol Energy Mater Sol Cells 90:2150–2158

    Article  Google Scholar 

  2. Xu H, Li J, Leung BHK, Poon CCY, Ong BS, Zhang Y, Zhao N (2013) A high-sensitivity near-infrared phototransistor based on an organic bulk heterojunction. Nanoscale 5:11850–11855

    Article  Google Scholar 

  3. Benjamin SC, Arzhang A, Briggs AD, Britz DA, Gunlycke D, Jefferson J et al (2006) Towards a fullerene-based quantum computer. J Phys Condens Matter 18:S867–S883

    Article  Google Scholar 

  4. Wang C, Guo ZX, Fu S, Wu W, Zhu D (2004) Polymers containing fullerene or carbon nanotube structures. Prog Polym Sci 29:1079–1141

    Article  Google Scholar 

  5. Jin X, Hu JY, Tint ML, Ong SL, Biryulin Y, Polotskaya G (2007) Estrogenic compounds removal by fullerene-containing membranes. Desalination 214:83–90

    Article  Google Scholar 

  6. Dyakonov V, Zoriniants G, Scharber M, Brabec JC, Janssen RAJ, Hummelen JC, Sariciftci NS (1999) Photoinduced charge carriers in conjugated polymer–fullerene composites studied with light-induced electron-spin resonance. Phys Rev B 59:8019–8025

    Article  Google Scholar 

  7. Brabec CJ, Johansson H, Cravino A, Sariciftci NS, Comoretto D, Dellepiane G, Moggio I (1999) The spin signature of charged photoexcitations in carbazolyl substituted polydiacetylene. J Chem Phys 111:10354–10361

    Article  Google Scholar 

  8. Lu Z, He C, Chung TC (2001) Composites of multifunctional benzylaminofullerene with low density polyethylene. Polymer 42:5233–5237

    Article  Google Scholar 

  9. Baltá-Calleja FJ, Giri L, Asano T, Mieno T, Sakurai A, Ohnuma M, Sawatari C (1996) Structure and mechanical properties of polyethylene–fullerene composites. J Mater Sci 31(19):5153–5157. doi:10.1007/BF00355918

    Article  Google Scholar 

  10. Weng D, Lee HK, Levon K, Mao J, Scrivens WA, Stephens EB, Tour JM (1999) The influence of Buckminster fullerenes and their derivatives on polymer properties. Eur Polym J 35:867–878

    Article  Google Scholar 

  11. Brabec CJ, Dyakonov V, Sariciftci NS, Graupner W, Leising G, Hummelen JC (1998) Investigation of photoexcitations of conjugated polymer/fullerene composites embedded in conventional polymers. J Chem Phys 109:1185–1195

    Article  Google Scholar 

  12. Campbell K, Gurun B, Sumpter BG, Thio YS, Bucknall DG (2011) Role of conformation in π–π interactions and polymer/fullerene miscibility. Phys Chem B 115:8989–8995

    Article  Google Scholar 

  13. Bucknall DG, Bernardo G, Shofner ML, Nabankur D, Raghavan D, Sumpter BG, Sides S et al (2012) Phase-morphology and molecular structure correlations in model fullerene–polymer nanocomposites. Mater Sci Forum 714:63–66

    Article  Google Scholar 

  14. Dencheva N, Denchev Z (2013) Clay distribution and crystalline structure evolution in polyamide 6/montmorillonite composites prepared by activated anionic polymerization. J Appl Polym Sci 130:1228–1238

    Article  Google Scholar 

  15. Kelar K (2006) Polyamide 6 modified with fullerenes prepared via anionic polymerization of ε-caprolactam. Polimery 51:415–424 (in Polish)

    Google Scholar 

  16. Zuev VV, Ivanova IG (2012) Mechanical and electrical properties of polyamide-6-based nanocomposites reinforced by fulleroid fillers. Polym Eng Sci 52:1206–1211

    Article  Google Scholar 

  17. Zuev VV, Shlikov AV (2012) Polyamide 12/fullerene C60 composites: investigation on their mechanical and dielectric properties. J Polym Res 19:9925–9930

    Article  Google Scholar 

  18. Zuev VV, Kostromin SV, Shlikov AV (2012) Mechanics of polymer nanocomposites modified with fulleroid nanofillers. Vysokomol Soedin Ser A 52:815–819

    Google Scholar 

  19. Ivanova L, Kulichikhin SG, Alkaeva OF, Akimushkina NM, Vyrsky UP, Malkin AY (1978) Determining of molecular characteristics of polycaproamide. Vysokomol Soedin Ser A 20(12):2813–2816

    Google Scholar 

  20. POLAR, version 2.7.3; Copyright® 1997–2008 by Stonybrook Technology and Applied research, Inc, USA

  21. Roda J (2009) Polyamides. In: Dubois P, Coulembier O, Raquez J-M (eds) Handbook of ring-opening polymerization. Wiley-VCH, Weinheim, p 177

    Google Scholar 

  22. Dan F, Vasiliu-Oprea C (1998) Anionic polymerization of caprolactam in organic media: morphological aspects. Colloid Polym Sci 276:483–495

    Article  Google Scholar 

  23. Wudl F, Hirsch A, Khemani KC, Suzuki T, Allemand PM, Kosch A et al (1992) Survey of chemical reactivity of C60, electrophile and dieno-polarophile par excellence. ACS Symp Ser 481:161–175

    Article  Google Scholar 

  24. Hirsch A, Brettreich M (2005) Fullerenes: chemistry and reactions. Wiley-VCH, Weinheim, p 87

    Google Scholar 

  25. Prato M (1999) Fullerene materials. In: Hirsch A (ed) Topics in current chemistry. Fullerenes and related structures, vol 199. Springer, Berlin, pp 173–187

  26. Dencheva N, Nunes T, Oliveira JM, Denchev Z (2005) Microfibrillar composites based on polyamide/polyethylene blends. 1. Structure investigations in oriented and isotropic polyamide 6. Polymer 46:887–901

    Article  Google Scholar 

  27. Krusic PJ, Wasserman E, Parkinson BA, Malone B, Holler ER Jr, Keizer PN et al (1991) Electron spin resonance study of the radical reactivity of C60. J Am Chem Soc 113:6274–6275

    Article  Google Scholar 

  28. Morton JR, Preston KF, Krusic PJ, Hill SA, Wasserman E (1992) The dimerization of fullerene RC60 radicals [R = alkyl]. J Am Chem Soc 114:5454–5455

    Article  Google Scholar 

  29. Troitskii BB, Troitskaya LS, Anikina LI, Denisova VN, Novikova MA, Khokhlova LV (2001) Inhibiting effect of fullerenes C60 and C70 on high-temperature oxidative degradation of copolymers of methyl methacrylate with methacrylic acid and methacrylamide. J Polym Mater 48:251–265

    Article  Google Scholar 

  30. Pearce EM, Shalaby SW, Barker RH (1975) Retardation of combustion of polyamides. In: Lewin M, Atlas SM, Pearce EM (eds) Flame retardant polymeric materials. Plenum, New York, pp 239–275

    Chapter  Google Scholar 

  31. Troitskii BB, Troitskaya LS, Dmitriev AA, Yakhnov AS (2000) Inhibition of thermo-oxidative degradation of poly(methyl methacrylate) and polystyrene by C60. Eur Polym J 36:1073–1084

    Article  Google Scholar 

  32. Kelar K, Jurkowski B (2007) Properties of anionically polymerized ε-caprolactam in the presence of carbon nanotubes. J Appl Polym Sci 104:3010–3017

    Article  Google Scholar 

  33. Wilkinson AN, Man Z, Stanford JL, Matikainen P, Clemens ML, Lees GC et al (2006) Structure and dynamic mechanical properties of melt intercalated polyamide 6/montmorillonite nanocomposites. Macromol Mater Eng 291:917–928

    Article  Google Scholar 

  34. Jha A, Bhowmick AK (1998) Thermal degradation and ageing behavior of novel thermoplastic elastomeric nylon-6/acrylate rubber reactive blends. Polym Degrad Stab 62:575–586

    Article  Google Scholar 

  35. Shen L, Du Q, Wang H, Zhong W, Yang Y (2004) In situ polymerization and characterization of polyamide-6/silica nanocomposites derived from water glass. Polym Int 53:1153–1160

    Article  Google Scholar 

  36. ANSI/ESD S541-2008: packaging material standards for ESD sensitive items (2008)

  37. Busani T, Devine RAB (2005) The importance of network structure in high-k dielectrics: LaAlO3, Pr2O3, and Ta2O5. J Appl Phys 98:44102

    Article  Google Scholar 

  38. Odian G (2004) Principles of polymerization, 4th edn. Wiley, Hoboken, pp 575–577

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by FCT (Fundação para a Ciência e Tecnologia—Portugal) through the program Strategic Project LA 25 2013–2014 and by the European Regional Development Fund (FEDER) through COMPETE, project EXPL/CTM-POL/0933/2012. N. Dencheva is grateful to the FCT for supporting her research by the postdoctoral award SFRH/BPD/45252/2008, co-financed by QREN–POPH program of the European Union. The financial support of HASYLAB at DESY (Grant No. II-07-011 EC) is also gratefully acknowledged. The authors wish to thank Mauricio Malheiro for his technical assistance in the DMTA and UV-Vis experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zlatan Denchev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dencheva, N., Gaspar, H., Filonovich, S. et al. Fullerene-modified polyamide 6 by in situ anionic polymerization in the presence of PCBM. J Mater Sci 49, 4751–4764 (2014). https://doi.org/10.1007/s10853-014-8174-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8174-7

Keywords

Navigation