Skip to main content
Log in

Polyhedral oligomeric silsesquioxane-capped poly(N-vinyl pyrrolidone) amphiphiles: synthesis, self-assembly, and use as porogen of nanoporous poly(vinylidene fluoride)

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this contribution, we reported the synthesis of polyhedral oligomeric silsesquioxane (POSS)-capped poly(N-vinyl pyrrolidone) (PVPy) via reversible addition-fragmentation chain transfer/macromolecular design via interchange of xanthate (RAFT/MADIX) polymerization. First, a POSS macromer bearing xanthate moiety was synthesized and was then used as the chain transfer agent to mediate the radical polymerization of N-vinylpyrrolidone (NVP). By controlling the mass ratios of the POSS-CTA to NVP, a series of the POSS-capped PVPy amphiphiles were successfully synthesized with various molecular weights. It was found that in bulks, the POSS-capped PVPy was microphase-separated and the POSS end groups were self-organized into the spherical microdomains with the size of 10~100 nm in diameter. In the solvent selective for PVPy (e.g., water), the POSS-capped PVPy was capable of self-assembling into the spherical micelles with an average diameter of 20~50 nm as evidenced by dynamic laser scattering (DLS) and transmission electron microscopy (TEM). Owing to the amphiphilicity, POSS-capped PVPy also displayed the self-assembly behavior in poly(vinylidene fluoride) (PVDF), in which the POSS cages were aggregated into 10~30 nm microdomains. In the nanocomposites of PVDF with POSS-capped PVPy, the spherical POSS microdomains were readily etched by using hydrofluoric acid, leaving the nanopores in the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Giannelis EP, Krishnamoorti R, Manias E (1999) Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Adv Polym Sci 138:107–147

    Article  CAS  Google Scholar 

  2. Abe Y, Gunji T (2004) Oligo- and polysiloxanes. Prog Polym Sci 29:149–182

    Article  CAS  Google Scholar 

  3. Pielichowski K, Njuguna J, Janowski B, Pielichowski J (2006) Polyhedral oligomeric silsesquioxanes (POSS)-containing nanohybrid polymers. Springer Berlin Heidelberg

  4. Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Silsesquioxanes. Chem Rev 94:1409–1430

    Article  Google Scholar 

  5. Provatas A, Matisons JG (1997) Silsesquioxanes: synthesis and applications. Trends Polym Sci 5:327–332

    CAS  Google Scholar 

  6. Schwab JJ, Lichtenhan JD (1998) Polyhedral oligomeric silsesquioxane (POSS)-based polymers. Appl Organomet Chem 12:707–713

    Article  CAS  Google Scholar 

  7. Li G, Wang L, Ni H, Pittman CU (2001) Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. J Inorg Organomet Polym 11:123–154

    Article  CAS  Google Scholar 

  8. Phillips SH, Haddad TS, Tomczak SJ (2004) Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers. Curr Opin Solid State Mater Sci 8:21–29

    Article  CAS  Google Scholar 

  9. Wang F, Lu X, He C (2011) Some recent developments of polyhedral oligomeric silsesquioxane (POSS)-based polymeric materials. J Mater Chem 21:2775–2782

    Article  CAS  Google Scholar 

  10. Lickiss PD, Rataboul F (2008) Chapter I: fully condensed polyhedral oligosilsesquioxanes (POSS): from synthesis to application. In Adv Organomet Chem. Elsevier Science & Technology 57:1–116

    CAS  Google Scholar 

  11. Kuo SW, Chang FC (2011) POSS related polymer nanocomposites. Prog Polym Sci 36:1649–1696

    Article  CAS  Google Scholar 

  12. Ni Y, Zheng S (2007) Nanostructured thermosets from epoxy resin and an organic-inorganic amphiphile. Macromolecules 40:7009–7018

    Article  CAS  Google Scholar 

  13. Zeng K, Zheng S (2007) Nanostructures and surface dewettability of epoxy thermosets containing hepta(3,3,3-trifluoropropyl) polyhedral oligomeric silsesquioxane-capped poly(ethylene oxide). J Phys Chem B 111:13919–13928

    Article  CAS  PubMed  Google Scholar 

  14. Zeng K, Wang L, Zheng S (2009) Rapid deswelling and reswelling response of poly(N-isopropylacrylamide) hydrogels via formation of interpenetrating polymer networks with polyhedral oligomeric silsesquioxane-capped poly(ethylene oxide) amphiphilic telechelics. J Phys Chem B 113:11831–11840

    Article  CAS  PubMed  Google Scholar 

  15. Kim BS, Mather PT (2002) Amphiphilic telechelics incorporating polyhedral oligosilsesquioxane: 1. synthesis and characterization. Macromolecules 35:8378–8384

    Article  CAS  Google Scholar 

  16. Kim BS, Mather PT (2006) Morphology, microstructure, and rheology of amphiphilic telechelics incorporating polyhedral oligosilsesquioxane. Macromolecules 39:9253–9260

    Article  CAS  Google Scholar 

  17. Zhang W, Müller AHE (2010) A “click chemistry” approach to linear and star-shaped telechelic POSS-containing hybrid polymers. Macromolecules 43:3148–3152

    Article  CAS  Google Scholar 

  18. Zhang W, Fang B, Walther A, Müller AHE (2009) Synthesis via raft polymerization of tadpole-shaped organic/inorganic hybrid poly(acrylic acid) containing polyhedral oligomeric silsesquioxane (POSS) and their self-assembly in water. Macromolecules 42:2563–2569

    Article  CAS  Google Scholar 

  19. Wang L, Zhang C, Zheng S (2011) Organic-inorganic poly(hydroxyether of bisphenol A) copolymers with double-decker silsesquioxane in the main chains. J Mater Chem 21:19344–19352

    Article  CAS  Google Scholar 

  20. Wei K, Wang L, Li L, Zheng S (2014) Synthesis and characterization of bead-like poly(N-isopropylacrylamide) copolymers with double decker silsesquioxane in the main chains. Polym Chem 6:256–269

    Article  Google Scholar 

  21. Wei K, Wang L, Zheng S (2013) Organic-inorganic polyurethanes with 3,13-dihydroxypropyloctaphenyl double-decker silsesquioxane chain extender. Polym Chem 4:1491–1501

    Article  CAS  Google Scholar 

  22. Choi J, Harcup J, Yee AF, Zhu Q, Laine RM (2001) Organic/inorganic hybrid composites from cubic silsesquioxanes. J Am Chem Soc 123:11420–11430

    Article  CAS  PubMed  Google Scholar 

  23. Huang J, He C, Xiao Y, Mya KY, Dai J, Siow YP (2003) Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties. Polymer 44:4491–4499

    Article  CAS  Google Scholar 

  24. Neumann D, Fisher M, Tran L, Matisons JG (2002) Synthesis and characterization of an isocyanate functionalized polyhedral oligosilsesquioxane and the subsequent formation of an organic-inorganic hybrid polyurethane. J Am Chem Soc 124:13998–13999

    Article  CAS  PubMed  Google Scholar 

  25. Costa ROR, Vasconcelos WL, Tamaki R, Laine RM (2001) Organic/inorganic nanocomposite star polymers via atom transfer radical polymerization of methyl methacrylate using octafunctional silsesquioxane cores. Macromolecules 34:5398–5407

    Article  CAS  Google Scholar 

  26. Choi J, Tamaki R, Kim SG, Laine RM (2003) Organic/inorganic imide nanocomposites from aminophenylsilsesquioxanes. Chem Mater 15:3365–3375

    Article  CAS  Google Scholar 

  27. Huang KW, Kuo SW (2010) High-performance polybenzoxazine nanocomposites containing multifunctional poss cores presenting vinyl-terminated benzoxazine groups. Macromol Chem Phys 211:2301–2311

    Article  CAS  Google Scholar 

  28. Liu Y, Yang X, Zhang W, Zheng S (2006) Star-shaped poly(ε-caprolactone) with polyhedral oligomeric silsesquioxane core. Polymer 47:6814–6825

    Article  CAS  Google Scholar 

  29. Pyun J, Matyjaszewski K, Wu J, Kim GM, Chun SB, Mather PT (2003) ABA triblock copolymers containing polyhedral oligomeric silsesquioxane pendant groups: synthesis and unique properties. Polymer 44:2739–2750

    Article  CAS  Google Scholar 

  30. Li S, Liu Y, Ji S, Zhou Z, Li Q (2014) Synthesis and self-assembly behavior of thermoresponsive poly(oligo(ethylene glycol) methyl ether methacrylate)-POSS with tunable lower critical solution temperature. Colloid Polym Sci 292:2993–3001

    Article  CAS  Google Scholar 

  31. Tsuchiya K, Ishida Y, Kameyama A (2017) Synthesis of diblock copolymers consisting of POSS-containing random methacrylate copolymers and polystyrene and their cross-linked microphase-separated structure via fluoride ion-mediated cage scrambling. Polym Chem 8:2516–2527

    Article  CAS  Google Scholar 

  32. Kim BS, Mather PT (2006) Amphiphilic telechelics with polyhedral oligosilsesquioxane (POSS) end-groups: dilute solution viscometry. Polymer 47:6202–6207

    Article  CAS  Google Scholar 

  33. Wang L, Gong W, Zheng S (2009) Poly(hydroxyether of bisphenol A)-alt-polydimethylsiloxane: a novel thermally crosslinkable alternating block copolymer. Polym Int 58:124–132

    Article  CAS  Google Scholar 

  34. Zeng K, Wang L, Zheng S, Qian X (2009) Self-assembly behavior of hepta(3,3,3-trifluoropropyl) polyhedral oligomeric silsesquioxane-capped poly(ɛ-caprolactone) in epoxy resin: nanostructures and surface properties. Polymer 50:685–695

    Article  CAS  Google Scholar 

  35. Zheng Y, Wang L, Zheng S (2012) Synthesis and characterization of heptaphenyl polyhedral oligomeric silsesquioxane-capped poly(N-isopropylacrylamide)s. Eur Polym J 48:945–955

    Article  CAS  Google Scholar 

  36. Li L, Zhang C, Zheng S (2017) Synthesis of POSS-terminated polycyclooctadiene telechelics via ring-opening metathesis polymerization. J Polym Sci Part A Polym Chem 55:223–233

    Article  CAS  Google Scholar 

  37. Wei K, Wang L, Zheng S (2013) Organic-inorganic copolymers with double-decker silsesquioxane in the main chains by polymerization via click chemistry. J Polym Sci Part A Polym Chem 51:4221–4232

    Article  CAS  Google Scholar 

  38. Xu S, Zhao B, Wei K, Zheng S (2018) Organic-inorganic polyurethanes with double decker silsesquioxanes in the main chains: morphologies, surface hydrophobicity, and shape memory properties. J Polym Sci Part B Polym Phys 56:893–906

    Article  CAS  Google Scholar 

  39. Zeng K, Zheng S (2010) Synthesis and characterization of organic/inorganic polyrotaxanes from polyhedral oligomeric silsesquioxane and poly(ethylene oxide)/α-cyclodextrin polypseudorotaxanes via click chemistry. Macromol Chem Phys 210:783–791

    Article  CAS  Google Scholar 

  40. Wang L, Zeng K, Zheng S (2011) Hepta(3,3,3-trifluoropropyl) polyhedral oligomeric silsesquioxane-capped poly(N-isopropylacrylamide) telechelics: synthesis and behavior of physical hydrogels. ACS Appl Mater Interfaces 3:898–909

    Article  CAS  PubMed  Google Scholar 

  41. Liu N, Zheng S (2016) Organic-inorganic poly(N-vinylpyrrolidone) copolymers with double-decker silsesquioxane in the main chains: synthesis, glass transition, and self-assembly behavior. J Polym Sci Part A Polym Chem 54:2949–2961

    Article  CAS  Google Scholar 

  42. Steffanut P, Osborn JA, Decian A, Fisher J (2015) Efficient homogeneous hydrosilylation of olefins by use of complexes of Pt0 with selected electron-deficient olefins as ligands. Chem Eur J 4:2008–2017

    Article  Google Scholar 

  43. Stenzel MH, Cummins L, Roberts GE, Davis TP, Vana P, Barner-Kowollik C (2003) Xanthate mediated living polymerization of vinyl acetate: a systematic variation in MADIX/RAFT agent structure. Macromol Chem Phys 204:1160–1168

    Article  CAS  Google Scholar 

  44. Cao Y, Xu S, Li L, Zheng S (2017) Physically cross-linked networks of POSS-capped poly(acrylate amide)s: synthesis, morphologies, and shape memory behavior. J Polym Sci Part B Polym Phys 55:587–600

    Article  CAS  Google Scholar 

  45. Kalyanasundaram K, Thomas JK (1977) Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 99:2039–2044

    Article  CAS  Google Scholar 

  46. Wilhelm M, Zhao C, Wang Y, Xu R, Winnik MA, Mura JL, Riess G, Croucher MD (1991) Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules 24:1033–1040

    Article  CAS  Google Scholar 

  47. Astafieva I, Zhong XF, Eisenberg A (1993) Critical micellization phenomena in block polyelectrolyte solutions. Macromolecules 26:7339–7352

    Article  CAS  Google Scholar 

  48. Li L, Li J, Zheng S (2018) Poly(vinylidene fluoride)-block-poly(N-vinyl pyrrolidone) diblock copolymers: synthesis via sequential RAFT/MADIX polymerization and self-assembly behavior. Polymer 142:61–71

    Article  CAS  Google Scholar 

  49. Nishi T, Wang TT (1975) Melting point depression and kinetic effects of cooling on crystallization in poly(vinylidene fluoride)-poly(methyl methacrylate) mixtures. Macromolecules 8:909–915

    Article  CAS  Google Scholar 

  50. Imken RL, Paul DR, Barlow JW (1976) Transition behavior of poly(vinylidene fluoride)/poly(ethyl methacrylate) blends. Polym Eng Sci 16:593–601

    Article  CAS  Google Scholar 

  51. Rasband WS (2007) Image J, National Institutes of Health: Bethesda, MD, 2007. Please see https://rsb.info.nih.gov/ij/index.html, Accessed, July 2017

  52. Wan LS, Li JW, Ke BB, Xu ZK (2012) Ordered microporous membranes templated by breath figures for size-selective separation. J Am Chem Soc 134:95–98

    Article  CAS  PubMed  Google Scholar 

  53. Boker A, Lin Y, Chiapperini K, Horowitz R, Thompson M, Carreon V, Xu T, Abetz C, Skaff H, Dinsmore AD, Emrick T, Russell TP (2004) Hierarchical nanoparticle assemblies formed by decorating breath figures. Nat Mater 3:302–306

    Article  CAS  PubMed  Google Scholar 

  54. Harris DJ, Lewis JA (2008) Marangoni effects on evaporative lithographic patterning of colloidal films. Langmuir 24:3681–3685

    Article  CAS  PubMed  Google Scholar 

  55. Lee JH, Ro HW, Huang R, Lemaillet P, Germer TA, Soles CL, Stafford CM (2012) Anisotropic, hierarchical surface patterns via surface wrinkling of nanopatterned polymer films. Nano Lett 12:5995–5999

    Article  CAS  PubMed  Google Scholar 

  56. Li B, Wang B, Liu Z, Qing G (2016) Synthesis of nanoporous PVDF membranes by controllable crystallization for selective proton permeation. J Membrane Sci 517:111–120

    Article  CAS  Google Scholar 

  57. Rahimpour A, Madaeni SS, Zereshki S, Mansourpanah Y (2009) Preparation and characterization of modified nano-porous PVDF membrane with high antifouling property using UV photo-grafting. Appl Surface Sci 255:7455–7461

    Article  CAS  Google Scholar 

  58. Lee MK, Lee J (2014) A nano-frost array technique to prepare nanoporous PVDF membranes. Nanoscale 6:8642–8648

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial supports from Natural Science Foundation of China (No. 21774078, 51133003 and 21274091) and Anhui Province Key Laboratory of Environment-friendly Polymer Materials were gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kangming Nie or Sixun Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 481 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhao, B., Li, L. et al. Polyhedral oligomeric silsesquioxane-capped poly(N-vinyl pyrrolidone) amphiphiles: synthesis, self-assembly, and use as porogen of nanoporous poly(vinylidene fluoride). Colloid Polym Sci 297, 141–153 (2019). https://doi.org/10.1007/s00396-018-4440-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4440-6

Keywords

Navigation