Skip to main content
Log in

Colloidal particles with various glass transition temperatures: preparation, assembly, and the properties of stop bands under heat treatment

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Monodisperse P(St-co-nBA-co-AA) colloidal microspheres with various glass transition temperatures (T gs), whose average particle sizes were about 300 nm, were prepared using soap-free emulsion polymerization by adjusting the ratio of styrene and n-butyl acrylate. Colloidal photonic crystals were assembled with these microspheres by vertical deposition method. Stop bands of colloidal crystals under different temperatures have been characterized. The relationship between the stop band and temperature was indicated. The microstructure and reflectance spectra of photonic crystals were characterized by SEM and fiber spectrometer, respectively. Results showed that as the temperature increased, only a little red shift of stop band appeared in the vicinity of T g and the intensity of the maximum reflection peak decreased until the stop bands disappeared. Furthermore, enough heating time at the T g ±2 °C could also lead to the disappearance of stop bands. What’s more, colloidal crystal films with certain connection strength were obtained by simple heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059–2062

    Article  Google Scholar 

  2. John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58:2486–2489

    Article  Google Scholar 

  3. Xia Y, Gates B, Yin Y, Lu Y (2000) Monodispersed colloidal spheres: old materials with new applications. Adv Mater 12:693–713

    Article  Google Scholar 

  4. Moon JH, Yang S (2010) Chemical aspects of three-dimensional photonic crystals. Chem Rev 110:547

    Article  Google Scholar 

  5. Ge J, Hu Y, Zhang T, Huynh T, Yin Y (2008) Self-assembly and field-responsive optical diffractions of superparamagnetic colloids. Langmuir 24:3671–3680

    Article  Google Scholar 

  6. Zhao Y, Zhao X, Sun C, Li J, Zhu R, Gu Z (2008) Encoded silica colloidal crystal beads as supports for potential multiplex immunoassay. Anal Chem 80:1598–1605

    Article  Google Scholar 

  7. Tang B, Zhao X, Zhao Y, Zhang W, Wang Q, Kong L, Gu Z (2011) Binary optical encoding strategy for multiplex assay. Langmuir 27:11722–11728

    Article  Google Scholar 

  8. Tsuji S, Kawaguchi H (2005) Colored thin films prepared from hydrogel microspheres. Langmuir 21:8439–8442

    Article  Google Scholar 

  9. Kang P, Ogunbo SO, Erickson D (2011) High resolution reversible color images on photonic crystal substrates. Langmuir 27:9676–9680

    Article  Google Scholar 

  10. Ge J, Yin Y (2008) Magnetically tunable colloidal photonic structures in alkanol solutions. Adv Mater 20:3485–3491

    Article  Google Scholar 

  11. Bonifacio LD, Lotsch BV, Puzzo DP, Scotognella F, Ozin GA (2009) Stacking the nanochemistry deck: structural and compositional diversity in one-dimensional photonic crystals. Adv Mater 21:1641–1646

    Article  Google Scholar 

  12. Lotsch BV, Scotognella F, Moeller K, Bein T and Ozin GA (2010) Stimuli-responsive Bragg stacks for chemo-optical sensing applications. In: Proceedings of SPIE, Photonics, Brussels. doi:10.111712.854703

  13. Lotsch BV, Knobbe CB, Ozin GA (2009) A step towards optically encoded silver release in 1D photonic crystals. Small 5:1498–1503

    Article  Google Scholar 

  14. Von Freymann G, Kitaev V, Lotsch BV, Ozin GA (2013) Bottom-up assembly of photonic crystals. Chem Soc Rev 42:2528–2554

    Article  Google Scholar 

  15. Colodrero S, Forneli A, López-López C, Pellejà L, Míguez H, Palomares E (2012) Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals. Adv Funct Mater 22:1303–1310

    Article  Google Scholar 

  16. Scotognella F, Puzzo DP, Monguzzi A, Wiersma DS, Maschke D, Tubino R, Ozin GA (2009) Nanoparticle one-dimensional photonic-crystal dye laser. Small 5:2048–2052

    Article  Google Scholar 

  17. Zhang JT, Wang L, Lamont DN, Velankar SS, Asher SA (2012) Fabrication of large-area two-dimensional colloidal crystals. Angew Chem Int Ed 51:6117–6120

    Article  Google Scholar 

  18. Nelson EC, Dias NL, Bassett KP, Dunham SN, Verma V, Miyake M, Wiltzius P, Rogers JA, Coleman JJ, Li X (2011) Epitaxial growth of three-dimensionally architectured optoelectronic devices. Nat Mater 10:676–681

    Article  Google Scholar 

  19. Vlasov YA, Bo X-Z, Sturm JC, Norris DJ (2001) On-chip natural assembly of silicon photonic bandgap crystals. Nature 414:289–293

    Article  Google Scholar 

  20. Zakhidov AA, Baughman RH, Iqbal Z, Cui C, Khayrullin I, Dantas SO, Marti J, Ralchenko VG (1998) Carbon structures with three-dimensional periodicity at optical wavelengths. Science 282:897–901

    Article  Google Scholar 

  21. Norris DJ, Vlasov YA (2001) Chemical approaches to three-dimensional semiconductor photonic crystals. Adv Mater 13:371–376

    Article  Google Scholar 

  22. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  23. Agrawal M, Fischer D, Gupta S, Zafeiropoulos NE, Pich A, Lidorikis E, Stamm M (2010) Three-dimensional colloidal crystal arrays exhibiting stop band in near-infrared region. J Phys Chem C 114:16389–16394

    Article  Google Scholar 

  24. Bailey J, Sharp JS (2010) Thin film polymer photonics: spin cast distributed Bragg reflectors and chirped polymer structures. Eur Phys J E 33:41–49

    Article  Google Scholar 

  25. Zhang X, Zhang J, Zhu D, Li X, Zhang X, Wang T, Yang B (2010) A universal approach to fabricate ordered colloidal crystals arrays based on electrostatic self-assembly. Langmuir 26:17936–17942

    Article  Google Scholar 

  26. Li C, Fan X, Zhou L, Zhang B, Yin D, Zhang Q (2013) Preparation and assembly performance of colloidal particles of photonic crystals with controlled photonic band gaps. J Polym Res 20:1–7

    Google Scholar 

  27. Ko YG, Shin DH (2007) Effects of liquid bridge between colloidal spheres and evaporation temperature on fabrication of colloidal multilayers. J Phys Chem B 111:1545–1551

    Article  Google Scholar 

  28. Mcmullan JM, Wagner NJ (2012) Directed self-assembly of colloidal crystals by dielectrophoretic ordering. Langmuir 28:4123–4130

    Article  Google Scholar 

  29. Vermolen E, Kuijk A, Filion L, Hermes M, Thijssen J, Dijkstra M, Van Blaaderen A (2009) Fabrication of large binary colloidal crystals with a NaCl structure. Proc Natl Acad Sci 106:16063–16067

    Article  Google Scholar 

  30. Hynninen A-P, Thijssen JH, Vermolen EC, Dijkstra M, Van Blaaderen A (2007) Self-assembly route for photonic crystals with a bandgap in the visible region. Nat Mater 6:202–205

    Article  Google Scholar 

  31. Ngo T, Liddell C, Ghebrebrhan M, Joannopoulos J (2006) Tetrastack: colloidal diamond-inspired structure with omnidirectional photonic band gap for low refractive index contrast. Appl Phys Lett 88:241920–241923

    Article  Google Scholar 

  32. Leunissen ME, Christova CG, Hynninen AP, Royall CP, Campbell AI, Imhof A, Dijkstra M, Van Roij R, Van Blaaderen A (2005) Ionic colloidal crystals of oppositely charged particles. Nature 437:235–240

    Article  Google Scholar 

  33. Mayoral R, Requena J, Moya JS, López C, Cintas A, Miguez H, Meseguer F, Vázquez L, Holgado M, Blanco (1997) 3D Long-range ordering in ein SiO2 submicrometer-sphere sintered superstructure. Adv Mater 9:257–260

    Article  Google Scholar 

  34. Xu X, Goponenko AV, Asher SA (2008) Polymerized polyHEMA photonic crystals: pH and ethanol sensor materials. J Am Chem Soc 130:3113–3119

    Article  Google Scholar 

  35. Zhang JT, Wang L, Luo J, Tikhonov A, Kornienko N, Asher SA (2011) 2-D array photonic crystal sensing motif. J Am Chem Soc 133:9152–9155

    Article  Google Scholar 

  36. Xuan R, Wu Q, Yin Y, Ge J (2011) Magnetically assembled photonic crystal film for humidity sensing. J Mater Chem 21:3672–3676

    Article  Google Scholar 

  37. Griffete N, Dybkowska M, Glebocki B, Basinska T, Connan C, MaîTre AS, Chehimi MM, Slomkowski S, Mangeney C (2010) Thermoresponsive colloidal crystals built from core-shell poly (styrene/α-tert-butoxy-ω-vinylbenzylpolyglycidol) microspheres. Langmuir 26:11550–11557

    Article  Google Scholar 

  38. Hu Z, Lu X, Gao J (2001) Hydrogel opals. Adv Mater 13:1708–1712

    Article  Google Scholar 

  39. Takeoka Y, Seki T (2006) Visualizing conformations of subchains by creating optical wavelength-sized periodically ordered structure in hydrogel. Langmuir 22:10223–10232

    Article  Google Scholar 

  40. Zhou M, Xing F, Ren M, Feng Y, Zhao Y, Qiu H, Wang X, Gao C, Sun F, He Y (2009) A facile method to assemble PNIPAM-containing microgel photonic crystals. Chem Phys Chem 10:523–526

    Article  Google Scholar 

  41. Hu S, Rieger J, Roth SV, Gehrke R, Leyrer RJ, Men Y (2008) GIUSAXS and AFM studies on surface reconstruction of latex thin films during thermal treatment. Langmuir 25:4230–4234

    Article  Google Scholar 

  42. Wohlleben W, Bartels FW, Boyle M, Leyrer RJ (2008) Covalent and physical cross-linking of photonic crystals with 10-fold-enhanced chemomechanical stability. Langmuir 24:5627–5635

    Article  Google Scholar 

  43. Wohlleben W, Bartels FW, Altmann S, Leyrer RJ (2007) Mechano-optical octave-tunable elastic colloidal crystals made from core-shell polymer beads with self-assembly techniques. Langmuir 23:2961–2969

    Article  Google Scholar 

  44. Schäfer CG, Gallei M, Zahn J, Engelhardt J, Hellmann GP, Rehahn M (2013) Thermo-and mechano-responsive elastomeric polymer opal films, reversible light. Chem Mater 25:2309–2318

    Article  Google Scholar 

  45. Sadakane M, Sasaki K, Nakamura H, Yamamoto T, Ninomiya W, Ueda W (2012) Important property of polymer spheres for the preparation of three-dimensionally ordered macroporous (3DOM) metal oxides by the ethylene glycol method: the glass-transition temperature. Langmuir 28:17766–17770

    Article  Google Scholar 

  46. Gaillard N, Guyot A, Claverie J (2003) Block copolymers of acrylic acid and butyl acrylate prepared by reversible addition–fragmentation chain transfer polymerization: synthesis, characterization, and use in emulsion polymerization. J Polym Sci Part A 41:684–698

    Article  Google Scholar 

  47. Ji J, Yan L, Xie D (2008) Surfactant-free synthesis of amphiphilic diblock copolymer in aqueous phase by a self-stability process. J Polym Sci Part A 46:3098–3107

    Article  Google Scholar 

  48. Luo Y, Wang X, Zhu Y, Li B-G, Zhu S (2010) Polystyrene-block-poly (n-butyl acrylate)-block-polystyrene triblock copolymer thermoplastic elastomer synthesized via RAFT emulsion polymerization. Macromolecules 43:7472–7481

    Article  Google Scholar 

  49. Kim BJ, Kang KS (2012) Fabrication of a crack-free large area photonic crystal with colloidal silica spheres modified with vinyltriethoxysilane. Cryst Growth Des 12:4039–4042

    Article  Google Scholar 

  50. Puzzo DP, Arsenault AC, Manners I, Ozin GA (2009) Electroactive inverse opal: a single material for all colors. Angew Chem 121:961–965

    Article  Google Scholar 

  51. Lin Y, Hui C, Jagota A (2001) The role of viscoelastic adhesive contact in the sintering of polymeric particles. J Colloid Interface Sci 237:267–282

    Article  Google Scholar 

  52. Haiat G, Huy P, Barthel E (2003) The adhesive contact of viscoelastic spheres. J Mech Phys Solids 51:69–99

    Article  Google Scholar 

  53. Pursiainen OL, Baumberg JJ, Ryan K, Bauer J, Winkler H, Viel B, Ruhl T (2005) Compact strain-sensitive flexible photonic crystals for sensors. Appl Phys Lett 87:101902–101903

    Article  Google Scholar 

  54. Viel B, Ruhl T, Hellmann GP (2007) Reversible deformation of opal elastomers. Chem Mater 19:5673–5679

    Article  Google Scholar 

  55. Pursiainen OL, Baumberg JJ, Winkler H, Viel B, Spahn P, Ruhl T (2008) Shear-induced organization in flexible polymer opals. Adv Mater 20:1484–1487

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51173146, No. 51173147), Key Project of Space Foundation (CASC201106) and graduate starting seed fund of Northwestern Polytechnical University (Grant No. Z2014024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Zhang, B., Tan, J. et al. Colloidal particles with various glass transition temperatures: preparation, assembly, and the properties of stop bands under heat treatment. J Mater Sci 49, 2653–2661 (2014). https://doi.org/10.1007/s10853-013-7970-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7970-9

Keywords

Navigation