Skip to main content
Log in

Simultaneous functionalization and reduction of graphene oxide with diatom silica

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The simultaneous coupling and reduction of graphene oxide (GO) with diatom silica (Amphora sp., Navicula ramossisira and Skeletonema sp.) were demonstrated in this work. Binding of GO with diatom silica via direct esterification reaction at 100 °C was observed as well as the reduction of GO. The Raman spectra of GO-diatom silica revealed the typical peaks for reduced graphene oxide at 1350 cm−1 (D band) and 1585 cm−1 (G band). Infrared spectroscopy also showed the presence of a unique peak at 1260–1300 cm−1 indicative of Si–O–C=O bond formation. This confirms the successful functionalization of GO with silica. Scanning electron microscopy showed the presence of GO on the diatom. For the pennate diatoms, Amphora sp. and N. ramossisira, their pores were closed demonstrating that GO was able to cover the surface of the diatom via the Si–O–C bond formation. For the centric diatom, Skeletonema sp., GO was found to be on its rib cage-like body structure and on its centric top. Electrochemical measurements by cyclic voltammetry using a redox probe, K3[Fe(CN)6], showed that GO-Amphora and GO-Navicula had more surface negative charge compared with bare GO or bare diatom silica. Furthermore, they demonstrated similar surface charge characteristics as the chemically reduced GO (by hydrazine hydrate). This implies that the composite (reduced GO-diatom) can possibly replace chemically reduced GO (by exposure to hydrazine vapor) and it could probably function as an electrode in sensing cationic biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gordon R, Sterrenburg FAS, Sandhage KHJ (2005) Nanosci Nanotechnol 5:1

    Article  CAS  Google Scholar 

  2. Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS (2009) Trends Biotechnol 27:116

    Article  CAS  Google Scholar 

  3. Lopez PJ, Descles J, Aleen AE, Bowler C (2005) Curr Opin Biotechnol 16:180

    Article  CAS  Google Scholar 

  4. Losic D, Mitchell JG, Voelcker NH (2009) Adv Mater 21:2947

    Article  CAS  Google Scholar 

  5. Losic D, Rosengarten G, Mitchell JG, Voelcker NHJ (2006) Nanosci Nanotechnol 6:982

    Article  CAS  Google Scholar 

  6. Losic D, Mitchell JG, Lal R, Voelcker NH (2007) Adv Funct Mater 17:2439

    Article  CAS  Google Scholar 

  7. Gale DK, Gutu T, Jiao J, Chang CH, Rorrer GL (2009) Adv Funct Mater 19:926

    Article  CAS  Google Scholar 

  8. Setaro A, Lettieri S, Maddalena P, De Stefano L (2007) Appl Phys Lett 91:051921

    Article  Google Scholar 

  9. Losic D, Short K, Lal R, Mitchell JG, Voelcker NH (2007) Langmuir 23:5014

    Article  CAS  Google Scholar 

  10. Yu Y, Addai-Mensah J, Losic D (2010) Langmuir 26(17):14068

    Article  CAS  Google Scholar 

  11. Rourke JP, Pandey PA, Moore JJ, Bates M, Kinloch IA, Young RJ, Wilson NR (2011) Angew Chem 50:3173

    Article  CAS  Google Scholar 

  12. Su CY, Xu Y, Zhang W, Zhao J, Liu A, Tang X, Tsai CH, Huang Y, Li LJ (2010) ACS Nano 4(9):5285

    Article  CAS  Google Scholar 

  13. Fan XB, Peng WC, Li Y, Li XY, Wang SL, Zhang GL, Zhang FB (2008) Adv Mater 20:4490

    Article  CAS  Google Scholar 

  14. Zhou Y, Bao QL, Tang LAL, Zhong YL, Loh KP (2009) Chem Mater 21:2950

    Article  CAS  Google Scholar 

  15. Zhu YW, Stoller MD, Cai WW, Velamakanni A, Piner RD, Chen D, Ruoff RS (2010) ACS Nano 4:1227

    Article  CAS  Google Scholar 

  16. Lin Z, Yao Y, Li Z, Liu Y, Li Z, Wong C (2010) J Phys Chem C 114:14819

    Article  CAS  Google Scholar 

  17. Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Rouff RS (2009) Nanoletters 9:4

    Google Scholar 

  18. Park S, Dikin DA, Nguyen ST, Ruoff RS (2009) J Phys Chem C 113:36

    Google Scholar 

  19. Salavagione HJ, Gomez MA, Martinez G (2009) Macromolecules 42:6331

    Article  CAS  Google Scholar 

  20. Kang SM, Park S, Kim D, Park SY, Rouff RS, Lee H (2011) Adv Funct Mater 21:108

    Article  CAS  Google Scholar 

  21. Vigil G, Xu Z, Steinberg S, Israelachvili J (1994) J Colloid Interface Sci 165:367

    Article  CAS  Google Scholar 

  22. Ballard CC, Broge EC, Iler RK, John DS, Mcwhorter R (1961) J Phys Chem 65(1):20

    Article  CAS  Google Scholar 

  23. Kimura T, Kuroda K, Sugahara Y (1998) J Porous Mater 5:127

    Article  CAS  Google Scholar 

  24. Mitamura Y, Komori Y, Hayashi S, Sugahara Y, Kuroda K (2001) Chem Mater 13:3747

    Article  CAS  Google Scholar 

  25. Kim SY, Kim B-H, Yang KS, Kim K-Y (2012) Mater Lett 71:74

    Article  CAS  Google Scholar 

  26. Li K, Huang Y, Yan L, Dai Y, Xue K, Guo H, Huang Z, Xiong J (2012) Catal Commun 18:16

    Article  CAS  Google Scholar 

  27. Fan D, Liu Y, He J, Zhou Y, Yang Y (2012) J Mater Chem 22(4):1396

    Article  CAS  Google Scholar 

  28. Murali S, Stoller MD, Morales C, Velamakanni A, Zhu Y, Ruoff R (2011) ECS Trans 33(27):99

    Article  CAS  Google Scholar 

  29. Watcharotone S, Diking DA, Stankovich S, Pinery R, Jung I, Dommett GHB, Evmenenko G, Wu S-E, Chen S-F, Liu C-P, Nguyen ST, Ruoff RS (2007) Nano Lett 7(7):1888

    Article  CAS  Google Scholar 

  30. Bismuto A, Setaro A, Maddalena P, De Stefano L, De Stefano M (2008) Sensors Actuators B 130:396

    Article  Google Scholar 

  31. Su CY, Xu Y, Zhang W, Zhao J, Tang X, Tsai CH, Li LJ (2009) Chem Mater 21:5674

    Article  CAS  Google Scholar 

  32. Jeffryes C, Gutu T, Jiao J, Rorrer G (2008) Mater Sci Eng C 28:107

    Article  CAS  Google Scholar 

  33. Khraisheh MAM, Al-Ghouti MA, Allen SJ, Ahmad MN (2005) Water Res 39:922

    Article  CAS  Google Scholar 

  34. Gao W, Alemany LB, Ci L, Ajayan PM (2009) Nat Chem 1:403

    Article  CAS  Google Scholar 

  35. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) Chem Soc Rev 39:228

    Article  CAS  Google Scholar 

  36. Alwarappan S, Erdem A, Liu C, Li C (2009) J Phys Chem C 113:8853

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Commission on Higher Education (CHED) for financial support, the Research Center for Applied Sciences (RCAS) of Academia Sinica, Taiwan for AFM and Raman use, the Department of Materials Science of Ateneo de Manila University for acquiring the SEM images and Southeast Asian Fisheries Development Center Aquaculture department (SEAFDEC-AQD), Tigbauan, Iloilo City for the diatom samples and Prof Thomas J Pinnavaia of the Department of Chemistry of Michigan State University, MI, USA for the TEM of GO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliet Q. Dalagan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalagan, J.Q., Enriquez, E.P. & Li, LJ. Simultaneous functionalization and reduction of graphene oxide with diatom silica. J Mater Sci 48, 3415–3421 (2013). https://doi.org/10.1007/s10853-012-7128-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7128-1

Keywords

Navigation