Skip to main content

Advertisement

Log in

Crystallographic, thermoelectric, and mechanical properties of polycrystalline type-I Ba8Al16Si30-based clathrates

  • Energy Materials & Thermoelectrics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Crystallographic, thermoelectric, and mechanical properties of polycrystalline Ba8Al16Si30-based samples with type-I clathrate structure prepared by combining arc melting and spark plasma sintering methods were investigated. The major phase of the samples was a type-I clathrate with an actual Al/Si ratio of ~15/31, strongly suggesting that framework deficiency was absent or was present in very low concentration in the samples. The Hall carrier concentration n of the samples was approximately 1 × 1021 cm−3, which is lower than the values reported so far for the Ba8Al16Si30 system. Other important material parameters of the samples were as follows: the density-of-states effective mass m* = 2.3m 0, Hall mobility μ = 7.4 cm2 V−1 s−1, and the lattice thermal conductivity κ L = 1.2 W m−1 K−1. The thermoelectric figure of merit ZT reached approximately 0.4 (900 K) for a sample with n = 9.7 × 1020 cm−3. Simulation using the experimentally determined values of material parameters showed that ZT reached values >0.5 if the carrier concentration is optimized at about 3 × 1020 cm−3. Young’s, shear, and bulk moduli were estimated to be approximately 98, 39, and 117 GPa, respectively, and Poisson’s ratio was found to be 0.25 from the longitudinal and transverse velocities of sound, v L = 6038 m/s and v T = 3503 m/s, respectively, for a sample with ZT = 0.4. The coefficient of thermal expansion (CTE) ranged from approximately 8 × 10−6 K−1 to 10 × 10−6 K−1 (330–690 K), which is smaller than the values reported for Ba8Ga16Ge30 and Sr8Ga16Ge30 clathrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Snyder GJ, Toberer ES (2008) Nat Mater 7:105

    Article  CAS  Google Scholar 

  2. Goldsmid HJ (1986) Electronic refrigeration. Pion Limited, London, p 58

    Google Scholar 

  3. Slack GA (1995) In: Rowe DM (ed) CRC handbook of thermoelectrics. CRC Press, Boca Raton, p 407

    Google Scholar 

  4. Slack GA (1997) In: Tritt TM, Kanatzidis MG, Lyon HB Jr, Mahan GD (eds) Materials research society symposium proceedings, vol 478. MRS Press, Warrendale, p 47

    Google Scholar 

  5. Nolas G, Cohn JL, Slack GA, Schujman SB (1998) Appl Phys Lett 73:178

    Article  CAS  Google Scholar 

  6. Cohn JL, Nolas GS, Fessatidis V, Metcalf TH, Slack GA (1999) Phys Rev Lett 82:779

    Article  CAS  Google Scholar 

  7. Nolas GS, Slack GA, Schujman SB (2001) In: Tritt TM (ed) Recent trends in thermoelectric materials research I, semiconductors and metals, vol 69. Academic Press, San Diego, p 255

    Chapter  Google Scholar 

  8. Blake NP, Møllnitz L, Kresse G, Metiu H (1999) J Chem Phys 111:3133

    Article  Google Scholar 

  9. Kuznetsov VL, Kuznetsova LA, Kaliazin AE, Rowe DM (2000) J Appl Phys 87:7871

    Article  CAS  Google Scholar 

  10. Blake NP, Latturner S, Bryan JD, Stucky GD, Metiu H (2001) J Chem Phys 115:8060

    Article  CAS  Google Scholar 

  11. Sales BC, Chakoumakos BC, Jin R, Thompson JR, Mandrus D (2001) Phys Rev B 63:245113

    Article  Google Scholar 

  12. Mudryk Y, Rogl P, Paul C, Berger S, Bauer E, Hilsher G, Godart C, Noël H (2002) J Phys: Condens Matter 14:7991

    Article  CAS  Google Scholar 

  13. Nataraj D, Nagao J, Ferhat M, Ebinuma T (2003) J Appl Phys 93:2424

    Article  CAS  Google Scholar 

  14. Anno H, Hokazono M, Kawamura M, Nagao J, Matsubara K (2002) In: Proceedings of the XXI international conference on thermoelectrics (ICT2002). IEEE, Piscataway, NJ, p 77

  15. Bentien A, Iversen BB, Bryan JD, Stucky GD, Palmqvist AEC, Schultz AJ, Henning RW (2002) J Appl Phys 91:5694

    Article  CAS  Google Scholar 

  16. Bridges F, Downward L (2004) Phys Rev B 70:140201(R)

  17. Bentien A, Nishibori E, Paschen S, Iversen BB (2005) Phys Rev B 71:144107

    Article  Google Scholar 

  18. Saramat A, Svensson G, Palmqvist AEC, Stiewe C, Mueller E, Rowe DM, Bryan JD, Stucky GD (2006) J Appl Phys 99:023708

    Article  Google Scholar 

  19. Condron CL, Martin J, Nolas GS, Piccoli PMB, Schultz AJ, Kauzlarich SM (2006) Inorg Chem 45:9381

    Article  CAS  Google Scholar 

  20. Avila MA, Suekuni K, Umeo K, Fukuoka H, Yamanaka S, Takabatake T (2006) Phys Rev B 74:125109

    Article  Google Scholar 

  21. Fujita I, Kishimoto K, Sato M, Anno H, Koyanagi T (2006) J Appl Phys 99:093707

    Article  Google Scholar 

  22. Kim JH, Okamoto NL, Kishida K, Tanaka K, Inui H (2006) Acta Mater 54:2057

    Article  CAS  Google Scholar 

  23. Okamoto NL, Kishida K, Tanaka K, Inui H (2007) J Appl Phys 101:113525

    Article  Google Scholar 

  24. Tang X, Li P, Deng S, Zhang Q (2008) J Appl Phys 104:013706

    Article  Google Scholar 

  25. Suekuni K, Avila MA, Umeo K, Fukuoka H, Yamanaka S, Nakagawa T, Takabatake T (2008) Phys Rev B 77:235119

    Article  Google Scholar 

  26. Toberer ES, Christensen M, Iversen BB, Snyder GJ (2008) Phys Rev B 77:075203

    Article  Google Scholar 

  27. Deng S, Tang X, Tang R (2009) Chin Phys B 18:3084

    Article  CAS  Google Scholar 

  28. Deng S, Saiga Y, Suekuni K, Takabatake T (2010) J Appl Phys 108:073705

    Article  Google Scholar 

  29. Tsujii N, Roudebush JH, Zevalkink A, Cox-Uvarov CA, Snyder GJ, Kauzlarich SM (2011) J Solid State Chem 184:1293

    Article  CAS  Google Scholar 

  30. Anno H, Yamada H, Nakabayashi T, Hokazono M, Shirataki R (2012) J Solid State Chem 193:94

    Article  CAS  Google Scholar 

  31. Condron CL, Kauzlarich SM, Gascoin F, Snyder GJ (2006) Chem Mater 18:4939

    Article  CAS  Google Scholar 

  32. Condron CL, Kauzlarich SM, Ikeda T, Snyder GJ, Haarmann F, Jeglic P (2008) Inorg Chem 47:8204

    Article  CAS  Google Scholar 

  33. Mugita N, Nakakohara Y, Motooka T, Teranishi R, Munetoh S (2011) Mater Sci Eng 18:142007

    Google Scholar 

  34. Eisenmann B, Schäfer H, Zagler R (1986) J Less Common Met 118:43

    Article  CAS  Google Scholar 

  35. Christensen M, Iversen BB (2007) Chem Mater 19:4896

    Article  CAS  Google Scholar 

  36. Condron CL, Hope H, Piccoli PMB, Schultz AJ, Kauzlarich SM (2007) Inorg Chem 46:4523

    Article  CAS  Google Scholar 

  37. Krishnamurthy S, Sher A, Chen A (1985) Appl Phys Lett 47:160

    Article  CAS  Google Scholar 

  38. Vining CB (1991) J Appl Phys 69:331

    Article  CAS  Google Scholar 

  39. Hokazono M, Anno H, Matsubara K (2005) Mater Trans 46:1485

    Article  CAS  Google Scholar 

  40. Anno H, Hokazono M, Kawamura M, Matsubara K (2003) In: Proceedings of the XXII international conference on thermoelectrics (ICT2003) IEEE, Piscataway, NJ, p 121

  41. Klemens PG (1960) Phys Rev 119:507

    Article  CAS  Google Scholar 

  42. Callaway J, Baeyer HC (1960) Phys Rev 120:1149

    Article  CAS  Google Scholar 

  43. Abeles B (1963) Phys Rev 131:1906

    Article  Google Scholar 

  44. Yang J (2004) In: Tritt TM (ed) Thermal conductivity—theory, properties, and applications—physics of solids and liquids. Kluwer Academic/Plenum Publishers, New York, p 1

    Google Scholar 

  45. Okamoto NL, Nakano T, Tanaka K, Inui H (2008) J Appl Phys 104:013529

    Article  Google Scholar 

  46. Falmbigl M, Rogl G, Rogl P, Kriegisch M, Müller H, Bauer E, Reinecker M, Schranz W (2010) J Appl Phys 108:043529

    Article  Google Scholar 

  47. Levinshtein ME, Rumyantsev SL (1996) In: Levinshtein M, Rumyantsev S, Shur M (eds) Handbook series on semiconductor parameters, volume 1: Si, Ge, C (diamond), GaAs, GaP, GaSb, InAs, InP, InSb. World Scientific Publishing, Singapore, p 29

    Google Scholar 

  48. Vorobyev LE (1996) In: Levinshtein M, Rumyantsev S, Shur M (eds) Handbook series on semiconductor parameters, volume 1: Si, Ge, C (diamond), GaAs, GaP, GaSb, InAs, InP, InSb. World Scientific Publishing, Singapore, p 54

    Google Scholar 

Download references

Acknowledgements

The authors would like thank Professor Naoki Toshima of Department of Applied Chemistry for use of Xe flash analyzer. This work was supported by JST CREST and KAKENHI(C) No.22560708.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Anno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anno, H., Hokazono, M., Shirataki, R. et al. Crystallographic, thermoelectric, and mechanical properties of polycrystalline type-I Ba8Al16Si30-based clathrates. J Mater Sci 48, 2846–2854 (2013). https://doi.org/10.1007/s10853-012-6977-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6977-y

Keywords

Navigation