Skip to main content
Log in

Seebeck coefficient and electrical conductivity of mesoscopic nanocrystalline SrTiO3

  • Energy Materials & Thermoelectrics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present study, we investigate the effect of the grain boundaries on both the electrical transport and the thermoelectric properties. For this purpose, the Seebeck coefficient and the electrical conductivity of a model material, such as nominally pure SrTiO3 (single crystal, microcrystalline, and nanocrystalline), is measured under oxidizing conditions. The impedance spectroscopy measurements reveal a strong change of the conduction properties of the nanocrystalline sample compared with the unperturbed bulk properties, namely a reduction of the p-type conductivity by two orders of magnitude at high oxygen partial pressure. Similarly, the Seebeck coefficient values of the nanocrystalline sample exhibit remarkable deviations from the single crystal ones: Under oxidizing conditions, values up to 2160 μV K−1 (at 575 °C) are detected. More importantly, in the nanocrystalline sample, the dependence of the Seebeck coefficient on the concentration of the charge carriers is found to be four times larger than in the single crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The figure of merit is defined as \( ZT = {{\alpha^{2} \sigma T} \mathord{\left/ {\vphantom {{\alpha^{2} \sigma T} \kappa }} \right. \kern-0pt} \kappa } \), where α is the Seebeck coefficient, σ the electrical conductivity, T the temperature, and κ the thermal conductivity.

  2. Typically, even a very small concentration (A) of impurities (acceptors) fixes the oxygen vacancies concentration at v = A/2.

  3. The value of \( \lambda^{*} \) can be determined according to the following equation

    \( \lambda^{*} = \sqrt {\frac{2{\varepsilon_{0} \varepsilon_{bulk} \Updelta \phi_{0} }}{em}} \)

    Note that the condition \( 2\lambda^{*} \ge L \) holds for values of different parameters which are characteristic for undoped SrTiO3, namely \( \varepsilon_{{r,{\text{bulk}}}} \) = 150, \( \Updelta \phi_{0} \) = 0.5 V and impurity concentration m ~300 ppm [12].

References

  1. Chiang Y-M, Lavik EB, Kosacki I, Tuller HL, Ying JY (1996) Appl Phys Lett 69:185

    Article  CAS  Google Scholar 

  2. Tschöpe A, Birringer R (2001) J Electroceram 7:169

    Article  Google Scholar 

  3. Kim S, Maier J (2002) J Electrochem Soc 149:J73

    Article  CAS  Google Scholar 

  4. Balaya P, Jamnik J, Fleig J, Maier J (2006) Appl Phys Lett 88:062109

    Article  Google Scholar 

  5. Guo X, Sigle W, Maier J (2003) J Am Ceram Soc 86:77

    Article  CAS  Google Scholar 

  6. Vollman M, Waser R (1994) J Am Ceram Soc 77:235

    Article  CAS  Google Scholar 

  7. Denk I, Claus J, Maier J (1997) J Electrochem Soc 144:3526

    Article  CAS  Google Scholar 

  8. Waser R (1995) Solid State Ionics 75:89

    Article  CAS  Google Scholar 

  9. De Souza RA (2009) Phys Chem Chem Phys 11:9939

    Article  Google Scholar 

  10. Maier J (1995) Prog Solid State Chem 23:171

    Article  CAS  Google Scholar 

  11. Göbel MC, Gregori G, Maier J (2011) Phys Chem Chem Phys 13:10940

    Article  Google Scholar 

  12. Lupetin P, Gregori G, Maier J (2010) Angew Chem Int Ed 49:10123

    Article  CAS  Google Scholar 

  13. Ohta H (2007) Mater Today 10:44

    Article  CAS  Google Scholar 

  14. Fergus JW (2012) J Eur Ceram Soc 32:525

    Article  CAS  Google Scholar 

  15. Okuda T, Nakanishi K, Miyasaka S, Tokura Y (2001) Phys Rev B 63:113104

    Article  Google Scholar 

  16. Ohta S, Nomura T, Ohta H, Koumoto K (2005) J Appl Phys 97:0341061

    Article  Google Scholar 

  17. Ohta S, Nomura T, Ohta H, Hirano M, Hosono H et al (2005) Appl Phys Lett 87:092108

    Article  Google Scholar 

  18. Ohta S, Ohta H, Koumoto K (2006) J Ceram Soc Jpn 114:102

    Article  CAS  Google Scholar 

  19. Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K (2007) Nat Mater 6:129

    Article  CAS  Google Scholar 

  20. Koumoto K, Wang Y, Zhang R, Kosuga A, Funahashi R (2010) Annu Rev Mater Res 40:363

    Article  CAS  Google Scholar 

  21. Heikes RR, Ure RW (1961) Thermoelectricity: science and engineering. Interscience Publishers, New York

    Google Scholar 

  22. Johnson VA, Lark-Horovitz K (1953) Phys Rev 92:226

    Article  CAS  Google Scholar 

  23. Becker JH, Frederikse HPR (1962) J Appl Phys 33:447

    Article  CAS  Google Scholar 

  24. Jonker GH (1968) Philips Res Rep 23:131

    Google Scholar 

  25. Vennekamp M, Janek J (1999) Solid State Ionics 118:43

    Article  CAS  Google Scholar 

  26. Tschöpe A, Kilassonia S, Zapp B, Birringer R (2002) Solid State Ionics 149:261

    Article  Google Scholar 

  27. Bak T, Nowotny J, Rekas M, Sorrell CC (2004) Ionics 10:159

    Article  CAS  Google Scholar 

  28. Denk I, Munch W, Maier J (1995) J Am Ceram Soc 78:3265

    Article  CAS  Google Scholar 

  29. Lupetin P (2012) PhD thesis, University of Stuttgart

  30. Lupetin P, Gregori G, Maier J (2012) manuscript in preparation

  31. Jalan B, Stemmer S (2010) Appl Phys Lett 97:042106

    Article  Google Scholar 

  32. Frederikse HPR, Thurber WR, Hosler WR (1964) Phys Rev 134:A44

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank G. Götz and A. Fuchs for the XRD analysis and the SEM characterization, respectively. M. Weissmayer is thanked for his support for the acquisition of the single crystal conductivity data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Gregori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregori, G., Heinze, S., Lupetin, P. et al. Seebeck coefficient and electrical conductivity of mesoscopic nanocrystalline SrTiO3 . J Mater Sci 48, 2790–2796 (2013). https://doi.org/10.1007/s10853-012-6894-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6894-0

Keywords

Navigation