Skip to main content

Advertisement

Log in

Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Compression properties of a refractory multi-component alloy, Ta20Nb20Hf20Zr20Ti20, were determined in the temperature range of 296–1473 K and strain rate range of 10−1–10−5 s−1. The properties were correlated with the microstructure developed during compression testing. The alloy was produced by vacuum arc melting, and it was hot isostatically pressed (HIPd) and homogenized at 1473 K for 24 h prior to testing. It had a single-phase body-centered cubic structure with the lattice parameter a = 340.4 pm. The grain size was in the range of 100–200 μm. During compression at a strain rate of έ = 10−3 s−1, the alloy had the yield strength of 929 MPa at 296 K, 790 MPa at 673 K, 675 MPa at 873 K, 535 MPa at 1073 K, 295 MPa at 1273 K and 92 MPa at 1473 K. Continuous strain hardening and good ductility (ε ≥ 50%) were observed in the temperature range from 296 to 873 K. Deformation at T = 1073 K and έ ≥ 10−3 s−1 was accompanied by intergranular cracking and cavitation, which was explained by insufficient dislocation and diffusion mobility to accommodate grain boundary sliding activated at this temperature. The intergranular cracking and cavitation disappeared with an increase in the deformation temperature to 1273 and 1473 K or a decrease in the strain rate to ~10−5 s−1. At these high temperatures and/or low-strain rates the alloy deformed homogeneously and showed steady-state flow at a nearly constant flow stress. Partial dynamic recrystallization, leading to formation of fine equiaxed grains near grain boundaries, was observed in the specimens deformed at 1073 and 1273 K and completed dynamic recrystallization was observed at 1473 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Subramanian PR, Mendiratta MG, Dimiduk DM, Stucke MA (1997) Mater Sci Eng A239-240:1

  2. Bewlay BP, Jackson MR, Zhao JC, Subramanian PR (2003) Metall Mater Trans 34A:2043

    Article  CAS  Google Scholar 

  3. Perepezko JH (2009) Science 326(5956):1068

    Article  CAS  Google Scholar 

  4. Yeh J-W, Chen S-K, Lin S-J, Gan J-Y, Chin T-S, Shun T–T, Tsau C-H, Chang S-Y (2004) Adv Eng Mater 6(5):299

    Article  CAS  Google Scholar 

  5. Yeh J-W (2006) Ann Chim: Sci Mater 31:633

    Article  CAS  Google Scholar 

  6. Yeh J-W, Chen Y-L, Lin S-J, Chen S-K (2007) Mater Sci Forum 560:1

    Article  CAS  Google Scholar 

  7. Zhou YJ, Zhang Y, Wang YL, Chen GL (2007) Mater Sci Eng A 454–455:260

    Google Scholar 

  8. Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Appl. Phys. Lett. 90 (2007) 181904/1-3

    Google Scholar 

  9. Zhou YJ, Zhang Y, Wang FJ, Wang YL, Chen GL (2008) J Alloys Compd 466:201

    Article  CAS  Google Scholar 

  10. Wang YP, Li BS, Ren MX, Yang C, Fu HZ (2008) Mater Sci Eng A 491:154

    Article  Google Scholar 

  11. Wang FJ, Zhang Y (2008) Mater Sci Eng A 496:214

    Article  Google Scholar 

  12. Wen LH, Kou HC, Li JS, Chang H, Xue XY, Zhou L (2009) Intermetallics 17:266

    Article  CAS  Google Scholar 

  13. Tsai CW, Tsai MH, Yeh JW, Yang CC (2010) J Alloys Compd 490:160

    Article  CAS  Google Scholar 

  14. Zhu JM, Fu HM, Zhang HF, Wang AM, Li H, Hu ZQ (2010) Mater Sci Eng A527:6975

    CAS  Google Scholar 

  15. Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK (2010) Intermetallics 18:1758

    Article  CAS  Google Scholar 

  16. Senkov ON, Wilks GB, Scott JM, Miracle DB (2011) Intermetallics 19:698

    Article  CAS  Google Scholar 

  17. Senkov ON, Scott JM, Senkova SV, Miracle DB, Woodward CF (2011) J Alloys Comp 509:6043

    Article  CAS  Google Scholar 

  18. Dieter GE (1986) Mechanical metallurgy, 3rd edn. McGraw-Hill, Inc., New York

    Google Scholar 

  19. McQueen HJ, Jonas JJ (1975) In: Treatise on materials science and technology, plastic deformation of materials, vol 6. Academic Press, New York, p 393

  20. Senkov ON, Meisenkothen F, Woodward CF (2011) In: Strain localization and deformation twins in a Ta20Nb20Hf20Zr20Ti20 high-entropy alloy. Air Force Research Laboratory

  21. Newbury DE, Joy DC, Echlin P, Fiori CE, Goldstein JI (1986) Advanced scanning electron microscopy and X-ray microanalysis. Plenum Press, New York

    Google Scholar 

  22. Mughrabi H (1993) In: Materials science and technology, plastic deformation and fracture of materials, vol 6. VCH, Cambridge, p 191

  23. Arsenault RJ (1975) Treatise on materials science and technology, plastic deformation of materials, vol 6. Academic Press, New York, p 1

  24. Meyers C (1999) Mechanical behavior of materials. Cambridge University Press, Cambridge

    Google Scholar 

  25. Christian JW, Mahajan S (1995) Progr Mater Sci 39:1

    Article  Google Scholar 

  26. Mulford RA, Kocks UF (1979) Acta Metall 27:1125

    Article  CAS  Google Scholar 

  27. Meyers MA, Vohringer O, Lubarda VA (2001) Acta Mater 49:4025

    Article  CAS  Google Scholar 

  28. Cane BJ, Greenwood GW (1975) Metal Sci 9(1):55

    Article  CAS  Google Scholar 

  29. Riedel H (1987) Fracture at high temperatures. Springer-Verlag New York Inc., New York

    Google Scholar 

  30. Frost HJ, Ashby MF (1982) Deformation-mechanism maps—the plasticity and creep of metals and ceramics. Pergamon Press, Oxford

    Google Scholar 

  31. Weertman J (1963) Trans AIME 227:1475

    Google Scholar 

  32. Weertman J (1968) ASM Trans 61:681

    CAS  Google Scholar 

  33. Chaudhury PK, Mohamed FA (1987) Metall Trans 18A(1987):2105

    CAS  Google Scholar 

  34. Langdon TG (1982) Metall Trans 13A:689

    Google Scholar 

  35. Sherby OD, Wadsworth J (1989) Progr Mater Sci 33:169

    Article  CAS  Google Scholar 

  36. Jonas JJ, Sellars CM, Tegart WJM (1969) Met Rev 14: 1

  37. Eager RL, Langmuir DB (1953) Phys Rev 89:911

  38. Giithoff F, Hemion B, Herzig C, Petry W, Schober HR, Trampenau J (1994) J Phys: Condens Matter 6:6211

    Article  Google Scholar 

  39. Davis BE, McMullen WD (1972) Acta Metall 20:593

    Article  CAS  Google Scholar 

  40. Kidson G, McGurn J (1961) Canad J Phys 39:1146

    Article  CAS  Google Scholar 

  41. Neikov OD, Naboychenko S, Gopienko VG, Frishberg IV, Lotsko DV (2009) Handbook of non-ferrous metal powders: technology and applications. Elsevier, Amsterdam

    Google Scholar 

  42. Herzig C, Köhler U, Divinski SV (1999) J Appl Phys 85:8120

    Google Scholar 

  43. Nakamura H, Koiwa M (1991) Iron Steel Inst Jpn Int 31:757

    Article  Google Scholar 

  44. Lazarus D (1965) Diffusion in body-centered cubic metals. ASM, Cleveland, p 155

    Google Scholar 

Download references

Acknowledgements

Discussions with Drs. D. Dimiduk, P. Martin, R. S. Mishra, S. Rao, S. L. Semiatin, G. Wilks, and R. Wheeler are recognized. This study was supported through the Air Force Research Laboratory Director’s Funds and through the USAF Contract No. FA8650-10-D-5226.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Senkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senkov, O.N., Scott, J.M., Senkova, S.V. et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J Mater Sci 47, 4062–4074 (2012). https://doi.org/10.1007/s10853-012-6260-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6260-2

Keywords

Navigation