Skip to main content
Log in

Few-layer nano-graphene structures with large surface areas synthesized on a multifunctional Fe:Mo:MgO catalyst system

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We present the synthesis of nano-graphene structures with large surface areas and high purity over a high-yield Fe:Mo:MgO catalytic system. Two different hydrocarbon sources, acetylene and methane, were used, and their role in determining the size and morphology of the few-layer graphene sheets was studied. In addition, varying the active metal loading of the catalyst system influenced the formation and type of the resulting carbon nano-structures, e.g., carbon nanotubes or few-layer graphene. Growth of nano-graphene sheets was detected after only 5-min reaction time over this multifunctional catalytic system. High purity and crystalline graphene structures were synthesized indicating another advantage of using this particular catalyst system. This catalytic chemical vapor deposition can be scaled up for large-scale few-layer graphene production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) Nat Mater 6:183

    Article  CAS  Google Scholar 

  2. Meyer JC, Geim AK, Katsnelson MI et al (2007) Nat Mater 446:60

    Article  CAS  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov et al (2004) Science 306:666

    Article  CAS  Google Scholar 

  4. Jung I, Dikin DA, Piner RD et al (2008) Nano Lett 8:4283

    Article  CAS  Google Scholar 

  5. Ghosh S, Calizo I, Teweldebrhan D et al (2008) Appl Phys Lett 92:151911

    Article  Google Scholar 

  6. Neto AHC, Guinea F, Peres NMR et al (2009) Rev Modern Phys 81:109

    Article  Google Scholar 

  7. Zhang Y, Ali SF, Dervishi E et al (2010) ACS Nano 4:3181

    Article  CAS  Google Scholar 

  8. Sun X, Liu Z, Welsher K et al (2008) Nano Res 1:203

    Article  CAS  Google Scholar 

  9. Liu Z, Robinson JT, Sun X et al (2008) J Am Chem Soc 130:10876

    Article  CAS  Google Scholar 

  10. Chen Z, Lin YM, Rooks MJ et al (2007) Phys E 40:228

    Article  CAS  Google Scholar 

  11. Barone V, Hod O, Scuseria GE (2006) Nano Lett 6:2748

    Article  CAS  Google Scholar 

  12. Kim KS, Zhao Y, Jang H et al (2009) Nature 457:706

    Article  CAS  Google Scholar 

  13. Wang X, Zhi L, Mullen K (2008) Nano Lett 8:323

    Article  CAS  Google Scholar 

  14. Vivekchand SRC, Rout CS, Subrahmanyam KS et al (2008) J Chem Sci 120:9

    Article  CAS  Google Scholar 

  15. Katsnelson MI (2007) Mater Today 10:20

    Article  CAS  Google Scholar 

  16. Geim AK, MacDonald AH (2007) Phys Today 60:35

    Article  CAS  Google Scholar 

  17. Treier M, Pignedoli CA, Laino T et al (2011) Nat Chem 3:61

    Article  CAS  Google Scholar 

  18. Kosynkin DV, Lu W, Sinitskii A et al (2011) ACS Nano 5:968

    Article  CAS  Google Scholar 

  19. Wang JJ, Zhu MY, Outlaw RA et al (2004) Carbon 42:2867

    Article  CAS  Google Scholar 

  20. Hiramatsu M, Shiji K, Amano H et al (2004) Appl Phys Lett 84:4708

    Article  CAS  Google Scholar 

  21. Rummeli MH, Kramberger C, Gruneis A et al (2007) Chem Mater 19:4105

    Article  Google Scholar 

  22. Rummeli MH, Bachmatiuk A, Scott A et al (2010) ACS Nano 4:4206

    Article  Google Scholar 

  23. Zhu M, Wang J, Outlaw RA et al (2007) Diam Relat Mater 16:196

    Article  CAS  Google Scholar 

  24. Wang X, You H, Liu F et al (2009) Chem Vapor Dep 15:53

    Article  CAS  Google Scholar 

  25. Dervishi E, Li Z, Watanabe F et al (2009) Chem Commun 27:4061

    Article  Google Scholar 

  26. Dervishi E, Li Z, Watanabe F et al (2010) Diam Relat Mater 19:67

    Article  CAS  Google Scholar 

  27. Biris AR, Lupu D, Dervishi E et al (2008) Phys Lett A 372:6416

    Article  CAS  Google Scholar 

  28. Dervishi E, Li Z, Watanabe F et al (2009) J Mater Chem 19:3004

    Article  CAS  Google Scholar 

  29. Biris AR, Lupu D, Gruneis A et al (2008) Chem Mater 20:3466

    Article  CAS  Google Scholar 

  30. Biris AR, Li Z, Dervishi E et al (2008) Phys Lett A 372:3051

    Article  CAS  Google Scholar 

  31. Treier M, Pignedoli CA, Laino T et al (2011) Nat Chem 3:61

    Article  CAS  Google Scholar 

  32. Yen JH, Leu IC, Lin CC et al (2005) Appl Phys A 80:415

    Article  CAS  Google Scholar 

  33. Ghosh A, Subramanyam KS, Krishna KS et al (2008) J Phys Chem C 112:15704

    Article  CAS  Google Scholar 

  34. Jin Z, Lu W, O’Neill JO et al (2011) Chem Mater 23:923

    Article  CAS  Google Scholar 

  35. Fowle JD, Allen MJ, Tung VC et al (2009) ACS Nano 3:301

    Article  Google Scholar 

  36. Schedin F, Geim AK, Morozov SV et al (2007) Nat Mater 6:652

    Article  CAS  Google Scholar 

  37. Rao CNR, Subrahmanyam KS, Ramakrishna Matte HSS et al (2010) Sci Technol Adv Mater 11:054502

    Article  Google Scholar 

  38. Peigney A, Laurent C, Flahaut E et al (2001) Carbon 39:507

    Article  CAS  Google Scholar 

  39. Dresselhaus MS, Jorio A, Hofmann M et al (2010) Nano Lett 10:751

    Article  CAS  Google Scholar 

  40. Mingyao ZM, Wang J, Outlaw RA et al (2007) Diam Relat Mater 16:196

    Article  Google Scholar 

  41. Ferrari AC, Meyer JC, Scardaci V et al (2006) Phys Rev Lett 97:187401

    Article  CAS  Google Scholar 

  42. Choia W, Lahiria L, Seelaboyinaa R et al (2010) Crit Rev Solid State Mater Sci 35:52

    Article  Google Scholar 

  43. Ferrari AC (2007) Solid State Commun 143:47

    Article  CAS  Google Scholar 

  44. Dervishi E, Li Z, Watanabe F et al (2009) Chem Mater 21:5491

    Article  CAS  Google Scholar 

  45. Kim CD, Min BK, Jung WS (2009) Carbon 47:1610

    Article  Google Scholar 

  46. Dervishi E, Li Z, Shyaka J et al (2011) Chem Phys Lett 501:390

    Article  CAS  Google Scholar 

  47. Weng L, Zhang Y, Chen P et al (2008) Appl Phys Lett 93:093107-3

    Article  Google Scholar 

  48. Nemes-Incze P, Osváth Z, Kamarás K et al (2008) Carbon 46:1435

    Article  CAS  Google Scholar 

  49. Lu W, Chang G, Luo Y et al (2011) J Mater Sci 46:5260. doi:10.1007/s10853-011-5464-1

    Google Scholar 

  50. Qian Y, Lu S, Gao F (2011) J Mater Sci 46:3517. doi:10.1007/s10853-011-5260-y

    Article  CAS  Google Scholar 

  51. Waqar Z (2007) J Mater Sci 42:1169. doi:10.1007/s10853-006-1453-1

    Article  CAS  Google Scholar 

  52. Zhang Y, Pan C (2011) J Mater Sci 46:2622. doi:10.1007/s10853-010-5116-x

    Article  CAS  Google Scholar 

  53. Bandla S, Hanan JC (2011) J Mater Sci. doi:10.1007/s10853-011-5867-z

  54. Ferralis N (2010) J Mater Sci 45:5135. doi:10.1007/s10853-010-4673-3

    Article  CAS  Google Scholar 

  55. Kalaitzidou K, Fukushima H, Askeland P et al (2008) J Mater Sci 43:2895. doi:10.1007/s10853-007-1876-3

    Article  CAS  Google Scholar 

  56. Li B, Zhong WH (2011) J Mater Sci 46:5595. doi:10.1007/s10853-011-5572-y

    Google Scholar 

Download references

Acknowledgements

The financial support from the Arkansas Science & Technology Authority (Grant # 08-CAT-03) and the Department of Energy (DE-FG36-06GO86072) and National Science Foundation (NSF/EPS-1003970) is greatly appreciated. The editorial assistance of Dr. Marinelle Ringer is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enkeleda Dervishi or Alexandru S. Biris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dervishi, E., Biris, A.R., Watanabe, F. et al. Few-layer nano-graphene structures with large surface areas synthesized on a multifunctional Fe:Mo:MgO catalyst system. J Mater Sci 47, 1910–1919 (2012). https://doi.org/10.1007/s10853-011-5980-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5980-z

Keywords

Navigation