Skip to main content
Log in

Faceting–roughening of twin grain boundaries

  • E-MRS MACAN
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The coincidence site lattice (CSL) plays a similar role for grain boundaries (GB) as the crystal lattice plays for free surfaces. The most densely packed CSL is the twin-related CSL, characterized by an inverse density of coincidence sites Σ = 3. Phase diagrams in coordinates “relative temperature T/T m—misorientation angle θ—inclination angle φ” were constructed for the twin GBs in Cu, Al, and Mo having different stacking fault energy γ. At low γ the twin GB remains faceted at all φ values and the number of crystallographically different facets increases with decreasing temperature. With increasing γ asymmetric twin GBs become more and more rough, and fewer facets appear with decreasing temperature. Also, with increasing γ the facets start to degenerate of into the first order rough-to-rough ridges. The behavior of twin GBs in Cu, Al, and Mo is compared with that of twin GBs in Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grimmer H, Bollmann W, Warrington DT (1974) Acta Cryst A 30:197

    Article  Google Scholar 

  2. Sutton AP, Balluffi RW (1987) Acta Metall 35:2177

    Article  CAS  Google Scholar 

  3. Rutter JW, Aust (1965) Acta Metall 13:181

    Article  CAS  Google Scholar 

  4. Fridman EM, Kopezky CV, Shvindlerman LS (1975) Zt Metallkde 66:533

    CAS  Google Scholar 

  5. Aristov VY, Kopezky CV, Shvindlerman LS (1977) Scr Metall 11:109

    Article  CAS  Google Scholar 

  6. Antonov AV, Kopezky CV, Shvindlerman LS (1971) Phys Metall Metallogr 32:187

    Google Scholar 

  7. Aleshin AN, Aristov VY, Bokstein BS et al (1978) Phys Stat Sol A 45:359

    Article  CAS  Google Scholar 

  8. Aleshin AN, Bokstein BS, Shvindlerman LS et al (1978) Phys Stat Sol A 45:359

    Article  CAS  Google Scholar 

  9. Aleshin AN, Bokstein BS, Shvindlerman LS (1977) Sov Phys Sol State 19:3511

    CAS  Google Scholar 

  10. Gottstein G, Shvindlerman LS (2009) Grain boundary migration in metals: thermodynamics, kinetics, applications. CRC Press Inc, Boca Raton

    Book  Google Scholar 

  11. Tan TY, Sass SL, Balluffi RW (1975) Phil Mag 31:575

    Article  CAS  Google Scholar 

  12. Straumal BB, Shvindlerman LS (1985) Acta Metall 33:1735

    Article  Google Scholar 

  13. Straumal BB, Klinger LM, Shvindlerman LS (1984) Acta Metall 32:1355

    Article  CAS  Google Scholar 

  14. Molodov DA, Straumal BB, Shvindlerman LS (1984) Scr Metall 18:207

    Article  CAS  Google Scholar 

  15. Aleshin AN, Prokofiev SI, Shvindlerman LS (1985) Scr Metall 19:1135

    Article  CAS  Google Scholar 

  16. Hsieh TE, Balluffi RW (1989) Acta Metall 37:2133

    Article  CAS  Google Scholar 

  17. Kim MJ, Cho YK, Yoon DY (2004) J Am Ceram Soc 87:455

    Article  CAS  Google Scholar 

  18. Rottman C, Wortis M (1984) Phys Rev B 29:328

    Article  CAS  Google Scholar 

  19. Straumal BB, Semenov VN, Kogtenkova OA et al (2004) Phys Rev Lett 192:196101

    Article  Google Scholar 

  20. Keshishev KO, Parshin AYa, Babkin AV (1981) Sov Phys JETP 53:362

    Google Scholar 

  21. Maksimova EL, Shvindlerman LS, Straumal BB (1988) Acta Metall 36:1573

    Article  CAS  Google Scholar 

  22. Maksimova EL, Shvindlerman LS, Straumal BB et al (1989) Acta Metall 37:2855

    Article  CAS  Google Scholar 

  23. Maksimova EL, Rabkin EI, Shvindlerman LS et al (1989) Acta Metall 37:1995

    Article  CAS  Google Scholar 

  24. Kinoshita Y, Yardley VA, Tsurekawa S (2011) J Mater Sci 46:4261. doi:10.1007/s10853-010-5241-6

    Article  CAS  Google Scholar 

  25. Kurihara K, Kokawa H, Sato S et al (2011) J Mater Sci 46:4270. doi:10.1007/s10853-010-5244-3

    Article  CAS  Google Scholar 

  26. Figueiredo RB, Langdon TG (2010) J Mater Sci 45:4827. doi:10.1007/s10853-010-4589-y

    Article  CAS  Google Scholar 

  27. Baretzky B, Friesel M, Petelin A et al (2006) Def Diff Forum 258:397

    Article  Google Scholar 

  28. Duparc OBMH (2011) J Mater Sci 46:4116. doi:10.1007/s10853-011-5367-1

    Article  Google Scholar 

  29. Semenov VN, Straumal BB, Glebovsky VG et al (1995) J Cryst Growth 151:180

    Article  CAS  Google Scholar 

  30. Schölhammer J, Baretzky B, Gust W et al (2001) Interf Sci 9:43

    Article  Google Scholar 

  31. Straumal BB, Polyakov SA, Mittemeijer EJ (2006) Acta Mater 54:167

    Article  CAS  Google Scholar 

  32. Kogtenkova O, Straumal B, Protasova S et al (2005) Zt Metallkd 96:216

    CAS  Google Scholar 

  33. Straumal BB, Semenov VN, Kogtenkova OA et al (2004) Phys Rev Lett 192:196101

    Article  Google Scholar 

  34. Straumal BB, Sursaeva VG, Polyakov SA (2001) Interface Sci 9:275

    Article  CAS  Google Scholar 

  35. Straumal BB, Polyakov SA, Bischoff E et al (2001) Interface Sci 9:287

    Article  CAS  Google Scholar 

  36. Straumal B, Polyakov S, Bischoff E et al (2004) Zt Metallkd 95:939

    CAS  Google Scholar 

  37. Kogtenkova OA, Straumal BB, Protasova SG et al (2005) Def Diff Forum 237:603

    Article  Google Scholar 

  38. Protasova SG, Kogtenkova OA, Straumal BB (2007) Mater Sci Forum 558:949

    Article  Google Scholar 

  39. Gallagher PCJ (1970) Metall Trans 1:2429

    CAS  Google Scholar 

  40. Chang L-S, Rabkin E, Straumal BB et al (1998) Defect Diff Forum 156:135

    Article  CAS  Google Scholar 

  41. Straumal BB, Polyakov SA, Bischoff E et al (2003) Def Diff Forum 216:93

    Article  Google Scholar 

  42. Straumal BB, Polyakov SA, Chang L-S et al (2007) Int J Mater Res (Zt Metallkd) 98:451

    CAS  Google Scholar 

  43. Gokon N, Kajihara A (2008) Mater Sci Eng A 477:121

    Article  Google Scholar 

  44. Goukon N, Yamada T, Kajihara M (2000) Acta Mater 48:2837

    Article  CAS  Google Scholar 

  45. Lojkowski W, Sodervall U, Mayer S (1998) Interface Sci 6:187

    Article  CAS  Google Scholar 

  46. Kuhn H, Bäro G, Gleiter H (1979) Acta Metall 27:959

    Article  CAS  Google Scholar 

  47. Goodhew PJ, Tan TY, Balluffi RW (1978) Acta Metall 26:557

    Article  CAS  Google Scholar 

  48. Wolf U, Ernst F, Muschik T et al (1992) Phil Mag A 66:991

    Article  CAS  Google Scholar 

  49. Ernst F, Finnis MW, Hoffmann D et al (1992) Phys Rev Lett 69:620

    Article  CAS  Google Scholar 

  50. Hofmann D, Finnis MW (1994) Acta Metall Mater 42:3555

    Article  CAS  Google Scholar 

  51. Straumal B, Sursaeva V, Baretzky B (2010) Scr Mater 62:924

    Article  CAS  Google Scholar 

  52. Heyraud JC, Metois JJ (1980) Acta Metal 28:1789

    Article  CAS  Google Scholar 

  53. Heyraud JC, Metois JJ (1983) Surf Sci 128:334

    Article  CAS  Google Scholar 

  54. Mullins WW (1956) Acta Metall 4:421

    Article  CAS  Google Scholar 

  55. Dingley DJ, Pond RC (1979) Acta Metall 27:667

    Article  CAS  Google Scholar 

  56. Pegel B (1968) Phys Status Solid 28:603

    Article  CAS  Google Scholar 

  57. Rybin VV, YuF Titovets, Teplitsky DM, Zolotorevsky NYu (1982) Fiz Metall Metalloved 53:544 (in Russian)

    CAS  Google Scholar 

  58. Davidson D, den Nijs M (2000) Phys Rev E 59:5029

    Article  Google Scholar 

  59. Davidson D, den Nijs M (2000) Phys Rev Lett 84:326

    Article  CAS  Google Scholar 

  60. Wynblatt P, Chatain D (2009) Rev Adv Mater Sci 21:44

    CAS  Google Scholar 

  61. Chatain D, Ghetta V, Wynblatt P (2004) Interface Sci 12:7

    Article  CAS  Google Scholar 

  62. Saka H, Iwata T, Imura T (1978) Phil Mag A 37:273

    Article  CAS  Google Scholar 

  63. Shin K, King AH (1991) Phil Mag A 63:1023

    Article  CAS  Google Scholar 

  64. Chen F-R, King AH (1988) Acta crystallogr B 43:416

    Article  Google Scholar 

  65. Straumal BB, Gornakova AS, Sursaeva VG (2008) Phil Mag Lett 88:27

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the Russian Foundation for Basic Research (contract 09-03-92481) and Israel Ministry of Science (project 3-5790) and the Program of bilateral cooperation between Russian and Polish Academies of Sciences for the financial support. Authors cordially thank Prof. E. Rabkin, Prof. R. Valiev, Prof. T. Langdon, and Dr. A. Mazilkin for stimulating discussions, Mr. A. Nekrasov for the help with SEM and EPMA measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Straumal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straumal, B.B., Baretzky, B., Kogtenkova, O.A. et al. Faceting–roughening of twin grain boundaries. J Mater Sci 47, 1641–1646 (2012). https://doi.org/10.1007/s10853-011-5807-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5807-y

Keywords

Navigation