Skip to main content
Log in

The development of internal cavitation in a superplastic zinc–aluminum alloy processed by ECAP

  • Ultrafine-Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A Zn-22% Al eutectoid alloy was processed by Equal-Channel Angular Pressing (ECAP) to produce an ultrafine grain size and then pulled in tension at elevated temperatures to evaluate the role of internal cavitation under superplastic conditions. Tensile testing yielded a highest elongation of 2,230% at a strain rate of 1.0 × 10−2 s−1 at 473 K representing high strain rate superplasticity. Quantitative cavity measurements were taken to investigate the significance of the internal cavities formed during superplastic deformation. The results demonstrate that cavity nucleation occurs continuously throughout superplastic flow, and there is a transition in the cavity growth mechanism from superplastic diffusion growth at the smaller cavity sizes to plasticity-controlled growth at the larger sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Langdon TG (1982) Metall Trans 13A:689

    Article  Google Scholar 

  2. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi:https://doi.org/10.1016/S0079-6425(99)00007-9

    Article  CAS  Google Scholar 

  3. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881. doi:https://doi.org/10.1016/j.pmatsci.2006.02.003

    Article  CAS  Google Scholar 

  4. Ma Y, Furukawa M, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1996) Mater Trans JIM 37:336

    Article  CAS  Google Scholar 

  5. Valiev RZ, Salimonenko DA, Tsenev NK, Berbon PB, Langdon TG (1997) Scr Mater 37:1945. doi:https://doi.org/10.1016/S1359-6462(97)00387-4

    Article  CAS  Google Scholar 

  6. Komura S, Berbon PB, Furukawa M, Horita Z, Nemoto M, Langdon TG (1998) Scr Mater 38:1851. https://doi.org/10.1016/S1359-6462(98)00099-2

    Article  CAS  Google Scholar 

  7. Furukawa M, Ma Y, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1998) Mater Sci Eng A 241:122. doi:https://doi.org/10.1016/S0921-5093(97)00481-4

    Article  Google Scholar 

  8. Kawasaki M, Figueiredo RB, Xu C, Langdon TG (2007) Metall Mater Trans 38A:1891

    Article  CAS  Google Scholar 

  9. Kawasaki M, Langdon TG (2007) J Mater Sci 42:1782. doi:https://doi.org/10.1007/s10853-006-0954-2

    Article  CAS  Google Scholar 

  10. Ishikawa H, Bhat DG, Mohamed FA, Langdon TG (1977) Metall Trans 8A:523

    Article  CAS  Google Scholar 

  11. Ahmed MMI, Mohamed FA, Langdon TG (1979) J Mater Sci 14:2913. doi:https://doi.org/10.1007/BF00611474

    Article  CAS  Google Scholar 

  12. Kawasaki M, Kubota K, Higashi K, Langdon TG (2006) Mater Sci Eng A 429:334. doi:https://doi.org/10.1016/j.msea.2006.05.043

    Article  CAS  Google Scholar 

  13. Taplin DMR, Dunlop GI, Langdon TG (1979) Annu Rev Mater Sci 9:151. doi:https://doi.org/10.1146/annurev.ms.09.080179.001055

    Article  CAS  Google Scholar 

  14. Jiang XG, Earthman JC, Mohamed FA (1994) J Mater Sci 29:5499. doi:https://doi.org/10.1007/BF00349941

    Article  CAS  Google Scholar 

  15. Xu C, Lee S, Langdon TG (2001) Mater Sci Forum 357–359:521

  16. Park K-T, Myung SH, Shin DH, Lee CS (2004) Mater Sci Eng A 371:178. doi:https://doi.org/10.1016/j.msea.2003.11.042

    Article  CAS  Google Scholar 

  17. Musin F, Kaibyshev R, Motohashi Y, Itoh G (2004) Metall Mater Trans 35A:2383

    Article  CAS  Google Scholar 

  18. Musin F, Kaibyshev R, Motohashi Y, Itoh G (2004) Scr Mater 50:511. doi:https://doi.org/10.1016/j.scriptamat.2003.10.021

    Article  CAS  Google Scholar 

  19. Kawasaki M, Huang Y, Xu C, Furukawa M, Horita Z, Langdon TG (2005) Mater Sci Eng A 410–411:402. doi:https://doi.org/10.1016/j.msea.2005.08.073

    Article  CAS  Google Scholar 

  20. Kawasaki M, Xu C, Langdon TG (2005) Acta Mater 53:5353. doi:https://doi.org/10.1016/j.actamat.2005.08.012

    Article  CAS  Google Scholar 

  21. Miller DA, Langdon TG (1978) Metall Trans 9A:1688

    Article  CAS  Google Scholar 

  22. Miller DA, Langdon TG (1979) Metall Trans 10A:1869

    Article  CAS  Google Scholar 

  23. Kawasaki M, Langdon TG (2008) Mater Trans 49:84. doi:https://doi.org/10.2320/matertrans.ME200720

    Article  CAS  Google Scholar 

  24. Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scr Mater 35:143. doi:https://doi.org/10.1016/1359-6462(96)00107-8

    Article  CAS  Google Scholar 

  25. Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A 257:328. doi:https://doi.org/10.1016/S0921-5093(98)00750-3

    Article  Google Scholar 

  26. Kumar P, Xu C, Langdon TG (2006) Mater Sci Eng A 429:324. doi:https://doi.org/10.1016/j.msea.2006.05.044

    Article  CAS  Google Scholar 

  27. Kumar P, Xu C, Langdon TG (2005) Mater Sci Eng A 410–411:447. doi:https://doi.org/10.1016/j.msea.2005.08.092

    Article  CAS  Google Scholar 

  28. Higashi K, Mabuchi M, Langdon TG (1996) ISIJ Int 36:1423. doi:https://doi.org/10.2355/isijinternational.36.1423

    Article  CAS  Google Scholar 

  29. Lapovok R (2002) Int J Fract 115:159. doi:https://doi.org/10.1023/A:1016399111787

    Article  CAS  Google Scholar 

  30. McKenzie PWJ, Lapovok R, Wells P, Raviprasad K (2003) Mater Sci Forum 426–432:297

    Article  Google Scholar 

  31. Ishikawa H, Mohamed FA, Langdon TG (1975) Philos Mag 32:1269. doi:https://doi.org/10.1080/14786437508228105

    Article  CAS  Google Scholar 

  32. Park K-T, Yang ST, Earthman JC, Mohamed FA (1994) Mater Sci Eng A 188:59. doi:https://doi.org/10.1016/0921-5093(94)90356-5

    Article  Google Scholar 

  33. Chokshi AH, Langdon TG (1989) Acta Mater 37:715. doi:https://doi.org/10.1016/0001-6160(89)90255-1

    Article  CAS  Google Scholar 

  34. Yousefiani A, Earthman JC, Mohamed FA (1998) Acta Mater 46:3557. doi:https://doi.org/10.1016/S1359-6454(98)00030-5

    Article  CAS  Google Scholar 

  35. Yousefiani A, Mohamed FA (1999) Philos Mag A 79:1247. doi:https://doi.org/10.1080/01418619908210359

    Article  CAS  Google Scholar 

  36. Tanaka T, Higashi K (2004) Mater Trans 45:2547. doi:https://doi.org/10.2320/matertrans.45.2547

    Article  CAS  Google Scholar 

  37. Park K-T, Hwang D-Y, Chang S-Y, Shin DH (2002) Metall Mater Trans 33A:2859

    Article  CAS  Google Scholar 

  38. Park K-T, Hwang D-Y, Lee Y-K, Kim Y-K, Shin DH (2003) Mater Sci Eng A 341:273. doi:https://doi.org/10.1016/S0921-5093(02)00216-2

    Article  Google Scholar 

  39. Chokshi AH, Langdon TG (1990) Acta Metall Mater 38:867. doi:https://doi.org/10.1016/0956-7151(90)90040-N

    Article  CAS  Google Scholar 

  40. Park K-T, Mohamed FA (1990) Metall Trans 21A:2605

    Article  CAS  Google Scholar 

  41. Langdon TG (1994) Acta Metall Mater 42:2437. doi:https://doi.org/10.1016/0956-7151(94)90322-0

    Article  CAS  Google Scholar 

  42. Chokshi AH, Langdon TG (1987) Acta Mater 35:1089. doi:https://doi.org/10.1016/0001-6160(87)90056-3

    Article  CAS  Google Scholar 

  43. Hancock JW (1976) Meat Sci 10:319. doi:https://doi.org/10.1016/0036-9748(76)90084-3

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the U.S. Army Research Office under Grant No. W911NF-05-1-0046

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megumi Kawasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawasaki, M., Langdon, T.G. The development of internal cavitation in a superplastic zinc–aluminum alloy processed by ECAP. J Mater Sci 43, 7360–7365 (2008). https://doi.org/10.1007/s10853-008-2771-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2771-2

Keywords

Navigation