Skip to main content
Log in

About the Decidability of Polyhedral Separability in the Lattice \(\mathbb {Z}^d\)

Recognizing Digital Polyhedra with a Prescribed Number of Faces

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The recognition of primitives in digital geometry is deeply linked with separability problems. This framework leads us to consider the following problem of pattern recognition : given a finite lattice set \(S\subset \mathbb {Z}^d\) and a positive integer n, is it possible to separate S from \(\mathbb {Z}^d \setminus S\) by n half-spaces? In other words, does there exist a polyhedron P defined by at most n half-spaces satisfying \(P\cap \mathbb {Z}^d = S\)? The difficulty comes from the infinite number of constraints generated by all the points of \(\mathbb {Z}^d\setminus S\). It makes the decidability of the problem non-straightforward since the classical algorithms of polyhedral separability can not be applied in this framework. We conjecture that the problem is nevertheless decidable and prove it under some assumptions: in arbitrary dimension, if the interior of the convex hull of S contains at least one lattice point or if the dimension d is 2 or if the dimension \(d=3\) and S is not in a specific configuration of lattice width 0 or 1. The proof strategy is to reduce the set of outliers \(\mathbb {Z}^d\setminus S\) to its minimal elements according to a partial order “is in the shadow of.” These minimal elements are called the lattice jewels of S. We prove that under some assumptions, the set S admits only a finite number of lattice jewels. The result about the decidability of the problem is a corollary of this fundamental property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Aggarwal, A., Booth, H., O’Rourke, J., Suri, S., Yap, C.: Finding minimal convex nested polygons. Inf. Comput. 83(1), 98–110 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. CVGIP Graph Model Image Process. 59(5), 302–309 (1997)

    Article  Google Scholar 

  3. Andres, E., Jacob, M.: The discrete analytical hyperspheres. IEEE Trans. Vis. Comput. Graph. 3(1), 75–86 (1997)

    Article  Google Scholar 

  4. Asano, T., Brimkov, V.E., Barneva, R.P.: Some theoretical challenges in digital geometry: a perspective. Discrete Appl. Math. 157(16), 3362–3371 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bárány, I., Howe, R., Lovász, L.: On integer points in polyhedra: a lower bound. Combinatorica 12(2), 135–142 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barvinok, A.I.: Lattice points and lattice polytopes. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, Second Edition, pp. 153–176. Chapman and Hall/CRC, (2004)

  7. Beck, M., Robins, S.: Computing the Continuous Discretely. Undergraduate Texts in Mathematics. Springer, Berlin (2007)

    MATH  Google Scholar 

  8. Brimkov, V.E., Andres, E., Barneva, R.P.: Object discretizations in higher dimensions. Pattern Recogn. Lett. 23(6), 623–636 (2002)

    Article  MATH  Google Scholar 

  9. Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity—a review. Discrete Appl. Math. 155(4), 468–495 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buzer, L.: A linear incremental algorithm for naive and standard digital lines and planes recognition. Graph. Models 65, 61–76 (2003)

    Article  MATH  Google Scholar 

  11. Buzer, L.: A simple algorithm for digital line recognition in the general case. Pattern Recogn. 40(6), 1675–1684 (2007)

    Article  MATH  Google Scholar 

  12. Clarkson, K.L.: Algorithms for polytope covering and approximation. In: Proceedings of the Algorithms and Data Structures, Third Workshop, WADS ’93, pp. 246–252. Montréal, Canada, August 11–13 (1993)

  13. Coeurjolly, D., Gérard, Y., Reveillès, J., Tougne, L.: An elementary algorithm for digital arc segmentation. Discrete Appl. Math. 139(1–3), 31–50 (2004). doi:10.1016/j.dam.2003.08.003

    Article  MathSciNet  MATH  Google Scholar 

  14. Cook, W., Hartmann, M., Kannan, R., McDiarmid, C.: On integer points in polyhedra. Combinatorica 12(1), 27–37 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Das, G., Joseph, D.: The complexity of minimum convex nested polyhedra. In: Proceedings of the 2nd Canadian Conference of Computational Geometry, pp. 296–301 (1990)

  16. Dorst, L., Smeulders, A.W.M.: Discrete representation of straight lines. IEEE Trans. Pattern Anal. Mach. Intell. 6(4), 450–463 (1984)

    Article  MATH  Google Scholar 

  17. Edelsbrunner, H., Preparata, F.: Minimum polygonal separation. Inf. Comput. 77(3), 218–232 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ehrhart, E.: Sur les polyèdres rationnels homothétiques à n dimensions. Comptes Rendus l’Acad. Sci. 254, 616–618 (1962)

    MATH  Google Scholar 

  19. Feschet, F., Tougne, L.: On the min DSS problem of closed discrete curves. Discrete Appl. Math. 151(1–3), 138–153 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fiorio, C., Toutant, J.: Arithmetic discrete hyperspheres and separatingness. In: Proceedings of the 13th International Conference of Discrete Geometry for Computer Imagery, DGCI 2006, pp. 425–436. Szeged, Hungary, October 25–27 (2006)

  21. Forchhammer, S., Kim, C.: Digital squares. IEEE 2, 672–674 (1988)

    Google Scholar 

  22. Gérard, Y.: Recognition of digital polyhedra with a fixed number of faces. In: Proceedings of the 19th IAPR International Conference of Discrete Geometry for Computer Imagery, DGCI 2016, pp. 415–426. Nantes, France, April 18–20 (2016)

  23. Gérard, Y., Coeurjolly, D., Feschet, F.: Gift-wrapping based preimage computation algorithm. Pattern Recogn. 42(10), 2255–2264 (2009). doi:10.1016/j.patcog.2008.10.003

    Article  MATH  Google Scholar 

  24. Gérard, Y., Debled-Rennesson, I., Zimmermann, P.: An elementary digital plane recognition algorithm. Discrete Appl. Math. 151(1–3), 169–183 (2005). doi:10.1016/j.dam.2005.02.026

    Article  MathSciNet  MATH  Google Scholar 

  25. Gérard, Y., Provot, L., Feschet, F.: Introduction to digital level layers. In: Proceedings of the 16th IAPR International Conference of Discrete Geometry for Computer Imagery, DGCI 2011, pp. 83–94. Nancy, France, April 6–8 (2011)

  26. Haase, C., Ziegler, G.M.: On the maximal width of empty lattice simplices. Eur. J. Comb. 21(1), 111–119 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Klette, R., Rosenfeld, A.: Digital Geometry : Geometric Methods for Digital Picture Analysis. The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  28. Krishnaswamy, R., Kim, C.E.: Digital parallelism, perpendicularity, and rectangles. IEEE Trans. Pattern Anal. Mach. Intell. 9(2), 316–321 (1987)

    Article  Google Scholar 

  29. Lenstra, H.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lindenbaum, M., Bruckstein, A.M.: On recursive, O(N) partitioning of a digitized curve into digital straight segments. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 949–953 (1993)

    Article  Google Scholar 

  31. Megiddo, N.: Linear-time algorithms for linear programming in \(r^3\) and related problems. SIAM J. Comput. 12(4), 759–776 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  32. Megiddo, N.: On the complexity of polyhedral separability. Discrete Comput. Geom. 3(4), 325–337 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nakamura, A., Aizawa, K.: Digital squares. Comput. Vis. Graph. Image Process. 49(3), 357–368 (1990)

    Article  Google Scholar 

  34. Nguyen, T.P., Debled-Rennesson, I.: Arc segmentation in linear time. In: Proceedings of the 14th International Conference of Computer Analysis of Images and Patterns, CAIP 2011, Part I, pp. 84–92. Seville, Spain, August 29-31 (2011)

  35. Nill, B., Ziegler, G.M.: Projecting lattice polytopes without interior lattice points. Math. Oper. Res. 36(3), 462–467 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. O’Rourke, J.: Computational geometry column 4. SIGACT News 19(2), 22–24 (1988)

    Google Scholar 

  37. Pick, G.: Geometrisches zur zahlenlehre. Sitzungsberichte des deutschen naturwissenschaftlich-medicinischen Vereines für Böhmen “Lotos” in Prag. 19, 311–319 (1965)

  38. Provot, L., Gérard, Y.: Recognition of digital hyperplanes and level layers with forbidden points. In: Proceedings of the 14th International Workshop of Combinatorial Image Analysis, IWCIA 2011, pp. 144–156. Madrid, Spain, May 23–25 (2011)

  39. Provot, L., Gérard, Y., Feschet, F.: Digital level layers for digital curve decomposition and vectorization. IPOL J. 4, 169–186 (2014)

    Article  Google Scholar 

  40. Rabinowitz, S.: A census of convex lattice polygons with at most one interior lattice point. Ars Comb. 28, 83–96 (1989)

    MathSciNet  MATH  Google Scholar 

  41. Debled-Rennesson, I., Reveilles, J.-P.: A linear algorithm for incremental digital display of circular arcs. Int. J. Pattern Recogn. Artif. Intell. 9, 635–662 (1995)

    Article  Google Scholar 

  42. Rosenfeld, A., Klette, R.: Digital straightness. Electr. Notes Theor. Comput. Sci. 46, 1–32 (2001)

    Article  MATH  Google Scholar 

  43. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)

    MATH  Google Scholar 

  44. Sebö, A.: An introduction to empty lattice simplices. In: Proceedings of the 7th International IPCO Conference of Integer Programming and Combinatorial Optimization, pp. 400–414. Graz, Austria, June 9–11 (1999)

  45. Stojmenović, I., Tosić, R.: Digitization schemes and the recognition of digital straight lines, hyperplanes and flats in arbitrary dimensions. Vis. Geom. 119, 197–212 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  46. Toutant, J., Andres, E., Largeteau-Skapin, G., Zrour, R.: Implicit digital surfaces in arbitrary dimensions. In: Proceedings of the 18th IAPR International Conference of Discrete Geometry for Computer Imagery, DGCI 2014, pp. 332–343. Siena, Italy, September 10–12 (2014)

  47. Toutant, J., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres: from morphological models to analytical characterizations and topological properties. Discrete Appl. Math. 161(16–17), 2662–2677 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Gerard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerard, Y. About the Decidability of Polyhedral Separability in the Lattice \(\mathbb {Z}^d\) . J Math Imaging Vis 59, 52–68 (2017). https://doi.org/10.1007/s10851-017-0711-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-017-0711-y

Keywords

Mathematics Subject Classification

Navigation