Skip to main content
Log in

Robust Multi-image Processing with Optimal Sparse Regularization

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Sparse modeling can be used to characterize outlier type noise. Thanks to sparse recovery theory, it was shown that 1-norm super-resolution is robust to outliers if enough images are captured. Moreover, sparse modeling of signals is a way to overcome ill-posedness of under-determined problems. This naturally leads to this question: does an added sparsity assumption on the signal improve the robustness to outliers of the 1-norm super-resolution, and if yes, how strong should this assumption be? In this article, we review and extend results of the literature to the robustness to outliers of overdetermined signal recovery problems under sparse regularization, with a convex variational formulation. We then apply them to general random matrices, and show how the regularization parameter acts on the robustness to outliers. Finally, we show that in the case of multi-image processing, the structure of the support of signal and noise must be studied precisely. We show that the sparsity assumption improves robustness if outliers do not overlap with signal jumps, and determine how the regularization parameter can be chosen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Structured sparsity through convex optimization. Stat. Sci. 27(4), 450–468 (2012). doi:10.1214/12-sts394

    Article  MathSciNet  Google Scholar 

  2. Benoit, L., Mairal, J., Bach, F., Ponce, J.: Sparse image representation with epitomes. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2913–2920. IEEE (2011). doi:10.1109/cvpr.2011.5995636

  3. Candès, E., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Prob. 23(3), 969–985 (2007). doi:10.1088/0266-5611/23/3/008

    Article  MATH  Google Scholar 

  4. Candès, E.J.: The restricted isometry property and its implications for compressed sensing. C.R. Math. 346(9–10), 589–592 (2008). doi:10.1016/j.crma.2008.03.014

    Article  MATH  Google Scholar 

  5. Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005). doi:10.1109/TIT.2005.858979

    Article  MATH  Google Scholar 

  6. Candès, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006). doi:10.1109/TIT.2006.885507

    Article  MATH  Google Scholar 

  7. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006a). doi:10.1109/TIT.2005.862083

    Article  MATH  Google Scholar 

  8. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006b). doi:10.1002/cpa.20124

    Article  MATH  Google Scholar 

  9. Champagnat, F., Le Besnerais, G., Kulcsár, C.: Statistical performance modeling for superresolution: a discrete data-continuous reconstruction framework. J. Opt. Soc. Am. A 26(7), 1730–1746 (2009). doi:10.1364/JOSAA.26.001730

    Article  Google Scholar 

  10. Cohen, A., Dahmen, W., DeVore, R.: Compressed sensing and best k-term approximation. J. Am. Math. Soc. 22(1), 211–231 (2009)

  11. Daubechies, I., DeVore, R., Fornasier, M., Güntürk, C.S.: Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure Appl. Math. 63(1), 1–38 (2010). doi:10.1002/cpa.20303

    Article  MATH  Google Scholar 

  12. Delbracio, M., Almansa, A., Morel, J.M., Musé, P.: Subpixel point spread function estimation from two photographs at different distances. SIAM J. Imaging Sci. 5(4), 1234–1260 (2012). doi:10.1137/110848335

    Article  MATH  MathSciNet  Google Scholar 

  13. Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47(7), 2845–2862 (2001). doi:10.1109/18.959265

    Article  MATH  MathSciNet  Google Scholar 

  14. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Inf. Theory 15(12), 3736–3745 (2006). doi:10.1109/tip.2006.881969

    MathSciNet  Google Scholar 

  15. Farsiu, S., Robinson, D., Elad, M., Milanfar, P.: Advances and challenges in super-resolution. Int. J. Imaging Syst. Technol. 14(2), 47–57 (2004a). doi:10.1002/ima.20007

    Article  Google Scholar 

  16. Farsiu, S., Robinson, M.D., Elad, M., Milanfar, P.: Fast and robust multiframe super resolution. IEEE Trans. Inf. Theory 13(10), 1327–1344 (2004). doi:10.1109/TIP.2004.834669

    Google Scholar 

  17. Geiger, D., Liu, T.L., Donahue, M.: Sparse representations for image decompositions. Int. J. Comput. Vision 33(2), 139–156 (1999). doi:10.1023/a%253a1008146126392

  18. He, Y., Yap, K.H., Chen, L., Chau, L.P.: A nonlinear least square technique for simultaneous image registration and super-resolution. IEEE Trans. Inf. Theory 16(11), 2830–2841 (2007). doi:10.1109/TIP.2007.908074

    MathSciNet  Google Scholar 

  19. Jenatton, R., Audibert, J.Y., Bach, F.: Structured variable selection with sparsity-inducing norms. J. Mach. Learn. Res. 12, 2777–2824 (2011)

    MATH  MathSciNet  Google Scholar 

  20. Kuppinger, P., Durisi, G., Bolcskei, H.: Uncertainty relations and sparse signal recovery for pairs of general signal sets. IEEE Trans. Inf. Theory 58(1), 263–277 (2012). doi:10.1109/tit.2011.2167215

    Article  MathSciNet  Google Scholar 

  21. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2272–2279. IEEE (2009) doi:10.1109/ICCV.2009.5459452

  22. Mallat, S., Yu, G.: Super-resolution with sparse mixing estimators. IEEE Trans. Image Process. 19(11), 2889–2900 (2010). doi:10.1109/TIP.2010.2049927

    Article  MathSciNet  Google Scholar 

  23. Marquina, A., Osher, S.: Image super-resolution by TV-regularization and bregman iteration. J. Sci. Comput. 37(3), 367–382 (2008). doi:10.1007/s10915-008-9214-8

    Article  MATH  MathSciNet  Google Scholar 

  24. Milanfar, P.: Super-resolution Imaging, vol. 1. CRC Press, Boca Raton (2010)

    Google Scholar 

  25. Mitra, K., Veeraraghavan, A., Chellappa, R.: Analysis of sparse regularization based robust regression approaches. IEEE Trans. Signal Process. 61(5), 1249–1257 (2013). doi:10.1109/tsp.2012.2229992

    Article  MathSciNet  Google Scholar 

  26. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vision 20(1–2), 99–120 (2004). doi:10.1023/B:JMIV.0000011326.88682.e5

    Article  MathSciNet  Google Scholar 

  27. Ning, Q., Chen, K., Yi, L., Fan, C., Lu, Y., Wen, J.: Image super-resolution via analysis sparse prior. IEEE Signal Process. Lett. 20(4), 399–402 (2013). doi:10.1109/lsp.2013.2242198

    Article  Google Scholar 

  28. Studer, C., Baraniuk, R.G.: Stable restoration and separation of approximately sparse signals. Appl. Comput. Harmon. Anal. (2013). doi:10.1016/j.acha.2013.08.006

  29. Studer, C., Kuppinger, P., Pope, G., Bolcskei, H.: Recovery of sparsely corrupted signals. IEEE Trans. Inf. Theory 58(5), 3115–3130 (2012). doi:10.1109/tit.2011.2179701

    Article  MathSciNet  Google Scholar 

  30. Tartavel, G., Gousseau, Y., & Peyré, G.: Constrained sparse texture synthesis. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 7893, pp. 186–197. Springer, Berlin (2013). doi:10.1007/978-3-642-38267-3_16.

  31. Tian, J., Ma, K.K.: A survey on super-resolution imaging. SIViP 5(3), 329–342 (2011). doi:10.1007/s11760-010-0204-6

    Article  MathSciNet  Google Scholar 

  32. Traonmilin, Y., Ladjal, S., Almansa, A.: On the amount of regularization for super-resolution interpolation. In: 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), pp. 380–384. IEEE (2012)

  33. Traonmilin, Y., Ladjal, S., Almansa, A.: Outlier removal power of the L1-norm super-resolution. In: Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 7893, pp. 198–209. Springer, Berlin ( 2013). doi:10.1007/978-3-642-38267-3_17

  34. Vaiter, S., Deledalle, C.A., Peyré, G., Dossal, C., Fadili, J.: Local behavior of sparse analysis regularization: applications to risk estimation. Appl. Comput. Harmon. Anal. (2012). doi:10.1016/j.acha.2012.11.006

  35. Yap, K.H., He, Y., Tian, Y., Chau, L.P.: A nonlinear -norm approach for joint image registration and super-resolution. IEEE Signal Process. Lett. 16(11), 981–984 (2009). doi:10.1109/LSP.2009.2028106

    Article  Google Scholar 

  36. Yu, G., Sapiro, G., Mallat, S.: Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity. IEEE Trans. Image Process. 21(5), 2481–2499 (2012). doi:10.1109/tip.2011.2176743

    Article  MathSciNet  Google Scholar 

  37. Yu, N., Qiu, T., Ren, F.: Denoising for multiple image copies through joint sparse representation. J. Math. Imaging Vision 45(1), 46–54 (2013). doi:10.1007/s10851-012-0343-1

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Traonmilin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Traonmilin, Y., Ladjal, S. & Almansa, A. Robust Multi-image Processing with Optimal Sparse Regularization. J Math Imaging Vis 51, 413–429 (2015). https://doi.org/10.1007/s10851-014-0532-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-014-0532-1

Keywords

Navigation