Skip to main content
Log in

Control Effectiveness Enhancement for the Hovering/Cruising Transition Control of a Ducted Fan UAV

  • Short paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The ducted fan unmanned aerial vehicle (UAV) is capable of both hovering and high-speed cruising, while the transitional flight between hovering and cruising is one of the most challenging flight maneuverings. In this paper, we address the flight mode transition control of a ducted fan UAV with constrained control inputs. During our early flight tests, we have engaged a saturation problem on the control vanes that led to severe crashes. In order to maintain a sufficient control on the attitude suffering from input saturation, we propose a control effectiveness enhancement (CEE) algorithm, which compensates the deficiency on vane control effectiveness by utilizing the thrust-vectored property of the ducted fan UAV. In the meanwhile, to handle the variation of the complex aerodynamic effects acting on the vehicle, we adopt an adaptive full envelope flight control scheme to compensate all of the unmodeled nonlinear dynamics. A sufficient condition is also derived to ensure the stability of the closed-loop system, by which the aircraft is capable of tracking a given velocity trajectory with bounded tracking error. Finally, flight tests are conducted with comparative experiments. The result is satisfactory in accomplishing the desired transition course and resisting the risk of flight failure in the presence of input saturation, verifying the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, J. Lee, K.: performance prediction and design of a ducted fan system. joint propulsion conferences. Am. Inst. Aeronaut. Astronaut. (2004)

  2. Fleming, J. Jones, T. Ng, W. Gelhausen, P. Enns, D.: Improving control system effectiveness for ducted fan VTOL UAVs operating in crosswinds. Infotech@Aerospace Conferences. Am. Inst. Aeronaut. Astronaut. (2003)

  3. Pflimlin, J.M. Binetti, P. Trouchet, D. Soueres, P. Hamel, T.: Aerodynamic modeling and practical attitude stabilization of a ducted fan uav. Proceedings of the European Control Conference 2007 (ECC), pp 4023–4029, (2007)

  4. Johnson, E. Turbe, M.: Modeling, control, and flight testing of a small ducted fan aircraft. Guidance, Navigation, and Control and Co-located Conferences. Am. Inst. Aeronaut. Astronaut. (2005)

  5. Jeong, J. Kim, S. Suk, J.: Control system design for a ducted-fan unmanned aerial vehicle using linear quadratic tracker. Int. J. Aerosp. Eng. p 12, (2015)

  6. Graf, W. Fleming, J. Ng, W.: Improving ducted fan UAV aerodynamics in forward flight. aerospace sciences meetings. Am. Inst. Aeronaut. Astronaut. (2008)

  7. Choi, Y.H. Hong, S. Suk, J. Jang, J.S. Lee, D.: Mathematical modeling of a small scale ducted-fan UAV. Guidance, Navigation, and Control and Co-located Conferences. Am. Inst. Aeronaut. Astronaut. (2011)

  8. Manzoor, T., Xia, Y.Q., Zhai, D.H., Ma, D.L.: Trajectory tracking control of a vtol unmanned aerial vehicle using offset-freetracking mpc. Chin. J. Aeronaut. 33(7), 2024–2042 (2020)

    Article  Google Scholar 

  9. Ohanian, O.J., Gelhausen, P.A., Inman, D.J.: Nondimensional modeling of ducted-fan aerodynamics. J. Aircr. 49(1), 126–140 (2012)

    Article  Google Scholar 

  10. Ryu, M., Cho, L., Cho, J.: Aerodynamic analysis of the ducted fan for a vtol uav in crosswinds. Trans. Japan Soc. Aeronaut. Space Sci. 59(2), 47–55 (2016)

    Article  Google Scholar 

  11. Wang, Y., Song, H.Y., Li, Q., Zhang, H.: Research on a full envelop controller for an unmanned ducted-fan helicopter based on switching control theory. Sci. Chin. Technol. Sci. 62(10), 1837–1844 (2019)

    Article  Google Scholar 

  12. Zhang, T. Barakos, G.N.: Review on ducted fans for compound rotorcraft. Aeronaut. J. pp 1–34, (2020)

  13. Tang, W., Song, B.F.: Transitional flight equilibrium and performance study for the x-nmrl tail-sitter vtol mav. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 233(8), 3056–3077 (2019)

    Article  Google Scholar 

  14. Cheng, Z. Pei, H.: Hover-to-cruise transition control for high-speed level flight of ducted fan uav. In: 2020 International Conference on Unmanned Aircraft Systems (ICUAS), pp 1329–1337. (2020)

  15. Pflimlin, J.M., Soueres, P., Hamel, T.: Position control of a ducted fan vtol uav in crosswind. Int. J. Control 80(5), 666–683 (2007)

    Article  MathSciNet  Google Scholar 

  16. Peddle, I.K., Jones, T., Treurnicht, J.: Practical near hover flight control of a ducted fan (slade). Control. Eng. Pract. 17(1), 48–58 (2009)

    Article  Google Scholar 

  17. Roberts, A., Tayebi, A.: Adaptive position tracking of vtol uavs. IEEE Trans. Robot. 27(1), 129–142 (2011)

    Article  Google Scholar 

  18. Sheng, S.Z., Sun, C.W.: A near-hover adaptive attitude control strategy of a ducted fan micro aerial vehicle with actuator dynamics. Appl. Sci. Basel 5(4), 666–681 (2015)

    Article  Google Scholar 

  19. Emami, S.A., Rezaeizadeh, A.: Adaptive model predictive control-based attitude and trajectory tracking of a vtol aircraft. IET Control Theory Appl. 12(15), 2031–2042 (2018)

    Article  MathSciNet  Google Scholar 

  20. Shan, S. Hou, Z. Wang, S.: Controller design and experiment of the ducted-fan flying robot. In 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp 1852–1857. (2016)

  21. Chen, M.: Constrained control allocation for overactuated aircraft using a neurodynamic model. IEEE Trans. Syst. Man Cybernet. Syst. 46(12), 1630–1641 (2016)

    Article  Google Scholar 

  22. Zhang, S.J., Shuang, W.F., Meng, Q.K.: Control surface faults neural adaptive compensation control for tailless flying wing aircraft with uncertainties. Int. J. Contr. Autom. Syst. 16(4), 1660–1669 (2018)

    Article  Google Scholar 

  23. Argha, A., Su, S.W., Celler, B.G.: Control allocation-based fault tolerant control. Automatica 103, 408–417 (2019)

    Article  MathSciNet  Google Scholar 

  24. Tohidi, S.S., Yildiz, Y., Kolmanovsky, I.: Adaptive control allocation for constrained systems. Automatica 121, 11 (2020)

    Article  MathSciNet  Google Scholar 

  25. Banazadeh, A., Taymourtash, N.: Optimal control of an aerial tail sitter in transition flight phases. J. Aircr. 53(4), 914–921 (2016)

    Article  Google Scholar 

  26. Oosedo, A., Abiko, S., Konno, A., Uchiyama, M.: Optimal transition from hovering to level-flight of a quadrotor tail-sitter uav. Auton. Robot. 41(5), 1143–1159 (2017)

    Article  Google Scholar 

  27. Pereira, J.L.: Hover and wind-tunnel testing of shrouded rotors for improved micro air vehicle design. PhD thesis, University of Maryland, College Park (2008)

  28. Zihuan, C. Hailong, P.: Flight transition control for ducted fan uav with saturation on control surfaces. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS), pp 439–446. (2021)

  29. Khalil, H.K.: Nonlinear system, 3rd edn. Prentice-Hall (2012)

  30. Li, B.Y., Sun, J.X., Zhou, W.F., Wen, C.Y., Low, K.H., Chen, C.K.: Transition optimization for a vtol tail-sitter uav. IEEE-ASME Trans. Mechatron. 25(5), 2534–2545 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Long Pei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by Scientific Instruments Development Program of NSFC [615278010], in part by“the Fundamental Research Funds for the Central Universities”and in part by Science and Technology Planning Project of Guangdong, China [2017B010116005]

Appendix

Appendix

In prior, we introduce some frequently used notations: \({{\lambda }_{\min }}(\centerdot )\) denotes the minimum eigenvalue of a matrix; \({{\lambda }_{\max }}(\centerdot )\) denotes the maximum eigenvalue of a matrix; \({{\left\| \centerdot \right\| }_{F}}\) denotes the Frobenius norm.

1.1 Proof of Theorem 1

The core function of the inner-loop design is to compensate the unmodeled nonlinear aerodynamic moment \(\varvec{M}_a^B\) such that \(\varvec{e}_{t1}\) converges to a small neighborhood around zero. This can be proved by reconstructing the closed-loop system into the form of a perturbed system and applying the Lyapunov stability theory.

1.1.1 The auxiliary system

Define the tracking errors \({{\varvec{\tilde{\omega }}}^{B}}={{\varvec{\hat{\omega }}}^{B}}-{{\varvec{\omega }}^{B}}\) and \(\varvec{\tilde{M}}_{a}^{B}=\varvec{\hat{M}}_{a}^{B}-\varvec{M}_{a}^{B}\) where \({{\varvec{\hat{\omega }}}^{B}}\) and \(\varvec{\hat{M}}_{a}^{B}\) are pre-defined by (18). From (16)(17)(18) we obtain the following error dynamics:

$$\begin{aligned} \left\{ \begin{array}{ll} {{{\varvec{\dot{\tilde{\omega }}}}}^{B}}=&{}\ {{\varvec{I}}^{-1}}\varvec{\tilde{M}}_{a}^{B}-{{\varvec{K}}_{1}}{{{\varvec{\tilde{\omega }}}}^{B}} \\ \varvec{\dot{\tilde{M}}}_{a}^{B}=&{}\ -{{\varvec{K}}_{\varvec{M}}}{{{\varvec{\tilde{\omega }}}}^{B}}-\varvec{\dot{M}}_{a}^{B}\\ {{{\varvec{\dot{e}}}}_{t1}}=&{}\ -{{\varvec{K}}_{uv}}{{{\varvec{{e}}}}_{t1}}-{{\varvec{I}}^{-1}}\varvec{K}_{uv}\varvec{\tilde{M}}_{a}^{B}+{{\varvec{I}}^{-1}}\varvec{\dot{M}}_{a}^{B} \end{array} \right. . \end{aligned}$$
(53)

Let \({{\varvec{z}}_{1}}=\begin{array}{ccc} [{{{\varvec{{e}}}}_{t1}}^{T} &{} {{({{{\varvec{\tilde{\omega }}}}^{B}})}^{T}} &{} {{(\varvec{\tilde{M}}_{a}^{B})}^{T}} \\ \end{array}{{]}^{T}}\in {{\mathbb {R}}^{9}}\). We can reconstruct (53) into a perturbed system:

$$\begin{aligned} {{\varvec{\dot{z}}}_{1}} = \varvec{H} {{\varvec{z}}_{1}} + \varvec{B} \varvec{\dot{M}}_{a}^{B}, \end{aligned}$$
(54)

where

$$\begin{aligned} \varvec{H} = \left[ \begin{array}{ccc} -{{\varvec{K}}_{uv}} &{} 0 &{} -{{\varvec{I}}^{-1}}{{\varvec{K}}_{uv}} \\ 0 &{} -{{\varvec{K}}_{1}} &{} {{\varvec{I}}^{-1}} \\ 0 &{} -{{\varvec{K}}_{\varvec{M}}} &{} 0 \\ \end{array} \right] , \quad \varvec{B} = \left[ \begin{array}{c} {{\varvec{I}}^{-1}} \\ 0 \\ -{{I}_{3\times 3}} \\ \end{array} \right] . \end{aligned}$$
(55)

Let \({{\varvec{T}}_{1}}\triangleq \text {diag}({{\varvec{K}}_{uv}},{{\varvec{K}}_{1}},\varvec{I} ^{-2}{{\varvec{K}}_{\varvec{M}}})\), solving the Lyapunov equation \(\varvec{H}^T \varvec{P}_1+\varvec{P}_1 \varvec{H}=-\varvec{T}_1\) yields:Let \({{\varvec{T}}_{1}}\triangleq \text {diag}({{\varvec{K}}_{uv}},{{\varvec{K}}_{1}},\varvec{I} ^{-2}{{\varvec{K}}_{\varvec{M}}})\), solving the Lyapunov equation \(\varvec{H}^T \varvec{P}_1+\varvec{P}_1 \varvec{H}=-\varvec{T}_1\) yields:

$$\begin{aligned}&{{\varvec{P}}_{1}}\triangleq \frac{1}{2}\left[ \begin{array}{ccc} I_{3\times 3} &{} 0 &{} \varvec{p}1 \\ 0 &{} I_{3\times 3} &{} \varvec{p}2 \\ \varvec{p}1 &{} \varvec{p}2 &{} \varvec{I} ^{-2}\varvec{p}3 \\ \end{array} \right] ,\nonumber \\&\left\{ \begin{array}{ll} \varvec{p}1\triangleq &{}\ {{\varvec{K}}_{uv}}{{\left[ \left( {{\varvec{K}}_{uv}}\varvec{+}{{\varvec{K}}_{\varvec{M}}} \right) \right] }^{-1}}\\ \varvec{p}2\triangleq &{}\ {{\left[ \left( {{\varvec{K}}_{1}}\varvec{+}{{\varvec{K}}_{\varvec{M}}} \right) \right] }^{-1}}\\ \varvec{p}3\triangleq &{}\ \left[ {{\varvec{K}}_{uv}}\varvec{+}{{\varvec{K}}_{\varvec{M}}}+{{\varvec{K}}_{uv}}^{2}\left( {{\varvec{K}}_{1}}\varvec{+}{{\varvec{K}}_{\varvec{M}}} \right) \right] \\ &{}\ \centerdot {{\left[ \left( {{\varvec{K}}_{1}}\varvec{+}{{\varvec{K}}_{\varvec{M}}} \right) \left( {{\varvec{K}}_{uv}}\varvec{+}{{\varvec{K}}_{\varvec{M}}} \right) {{\varvec{K}}_{\varvec{M}}} \right] }^{-1}}\\ \end{array} \right. . \end{aligned}$$
(56)

Consider the following Lyapunov candidate:

$$\begin{aligned} L_1={{\varvec{z}}_{1}}^{T}{{\varvec{P}}_{1}}{{\varvec{z}}_{1}}. \end{aligned}$$
(57)

From (56) and taking Assumption 1, it follows that:

$$\begin{aligned} \dot{L}_1= & {} \ -{{\varvec{z}}_{1}}^{T}{{\varvec{T}}_{1}}{{\varvec{z}}_{1}}+{{\varvec{z}}_{1}}^{T}{{\varvec{P}}_{1}}\varvec{B}\varvec{\dot{M}}_a^B\nonumber \\\le & {} \ -b_1\left\| {{\varvec{z}}_{1}} \right\| _{2}^{2}+a_1d_m\left\| {{\varvec{z}}_{1}} \right\| _{2}, \end{aligned}$$
(58)

where

$$\begin{aligned} \left\{ \begin{array}{ll} &{}b_1\triangleq \min \{{{\lambda }_{\min }}({{\varvec{K}}_{uv}}),{{\lambda }_{\min }}({{\varvec{K}}_{1}}),{{\lambda }_{\min }}({\varvec{I} ^{-2}{\varvec{K}}_{M}})\}\\ &{}a_1\triangleq \lambda _{\max } (\varvec{P}_1)\sqrt{\lambda _{\max } (\varvec{I}^{-1})+1}\\ \end{array}\right. . \end{aligned}$$
(59)

1.1.2 The closed-loop system

From (1)(13)(14)(16), we can establish the following perturbed system:

$$\begin{aligned} \left\{ \begin{array}{ll} {{{\varvec{\dot{e}}}}_{\varvec{\omega }}}=&{}\ -{{\varvec{K}}_{\varvec{\omega }}}{{\varvec{e}}_{\varvec{\omega }}}-{{{\varvec{{e}}}}_{t1}}\\ {{{\varvec{\dot{e}}}}_{\varvec{\eta }}}=&{}\ -{{\varvec{K}}_{\varvec{\eta }}}{{\varvec{e}}_{\varvec{\eta }}}+\varvec{Q}{{\varvec{e}}_{\varvec{\omega }}} \\ \end{array} \right. , \end{aligned}$$
(60)

which satisfies:

$$\begin{aligned}&\left\{ \begin{array}{ll} {{\left\| {{{\varvec{\dot{e}}}}_{\varvec{\eta }}} \right\| }_{2}}\le &{}\ -{{\lambda }_{min}}({{\varvec{K}}_{\varvec{\eta }}}){{\left\| {{\varvec{e}}_{\varvec{\eta }}} \right\| }_{2}}+{{\gamma }_{1}}{{\left\| {{\varvec{e}}_{\varvec{\omega }}} \right\| }_{2}} \\ {{\left\| {{{\varvec{\dot{e}}}}_{\varvec{\omega }}} \right\| }_{2}}\le &{}\ -{{\lambda }_{min}}({{\varvec{K}}_{\varvec{\omega }}}){{\left\| {{\varvec{e}}_{\varvec{\omega }}} \right\| }_{2}}+{{\left\| {{\varvec{z}}_{1}} \right\| }_{2}}\nonumber \\ \end{array}\right. ,\\&{{\gamma }_{1}}\triangleq \underset{-{{\varphi }_{0}}\le \varphi \le {{\varphi }_{0}}}{\mathop {\sup }}\,\left( {{\left\| \varvec{Q} \right\| }_{F}} \right) =\sqrt{1+2/{{\cos }^{2}}({{\varphi }_{0}})}. \end{aligned}$$
(61)

For positive parameters \(c_1,c_2>0\), consider the following Lyapunov candidates:

$$\begin{aligned} {{L}_{2}}=\frac{1}{2}c_1{{\varvec{e}}_{\varvec{\eta }}}^{T}{{\varvec{e}}_{\varvec{\eta }}}+\frac{1}{2}{{\varvec{e}}_{\varvec{\omega }}}^{T}{{\varvec{e}}_{\varvec{\omega }}}+c_2{{L}_{1}}. \end{aligned}$$
(62)

Substituting (58)(61) into (62) yields:

$$\begin{aligned} \dot{L}_2\le & {} \ -{{\varvec{z}}_{2}}^{T}{{\Lambda }_{1}}{{\varvec{z}}_{2}}+c_2a_1 \left\| {{\varvec{z}}_{1}} \right\| _{2}d_{m}\nonumber \\\le & {} \ -{{b}_{2}}\left\| {{\varvec{z}}_{2}} \right\| _{2}^{2}+c_2a_1 \left\| {{\varvec{z}}_{2}} \right\| _{2}d_{m},\nonumber \\\le & {} \ -(1-\epsilon )b_2\left\| {{\varvec{z}}_{2}} \right\| _{2}^{2}, \qquad \forall \left\| {{\varvec{z}}_{2}} \right\| _{2} \ge (\sqrt{2}c_2a_1d_{m})/(\epsilon b_2), \end{aligned}$$
(63)

where

$$\begin{aligned} {{\varvec{z}}_{2}}\triangleq \left[ \begin{array}{c} {{\left\| {{\varvec{e}}_{\varvec{\eta }}} \right\| }_{2}} \\ {{\left\| {{\varvec{e}}_{\varvec{\omega }}} \right\| }_{2}} \\ {{\left\| {{\varvec{z}}_{{1}}} \right\| }_{2}} \\ \end{array} \right] ,\ {{\Lambda }_{1}}\triangleq \left[ \begin{array}{ccc} c_1{{\lambda }_{\min }}({{\varvec{K}}_{\varvec{\eta }}}) &{} -\frac{c_1{{\gamma }_{1}}}{2} &{} 0 \\ -\frac{c_1{{\gamma }_{1}}}{2} &{} {{\lambda }_{\min }}({{\varvec{K}}_{\varvec{\omega }}}) &{} -\frac{1}{2} \\ 0 &{} -\frac{1}{2} &{} {{c}_{2}}{{b}_{1}} \\ \end{array} \right] ,\ {{b}_{2}}\triangleq {{\lambda }_{\min }}({{\Lambda }_{1}}). \end{aligned}$$
(64)

\({{\dot{L}}_{2}}\) is negative definite when \({{\Lambda }_{1}}\) is positive definite and \((1-\epsilon )>0\). This condition can be achieved by choosing:

$$\begin{aligned} \left\{ \begin{array}{ll} {{c}_{1}}<4{{\lambda }_{m}}({{\varvec{K}}_{\varvec{\eta }}}){{\lambda }_{m}}({{\varvec{K}}_{\varvec{\omega }}})/\gamma _{1}^{2}\\ {{c}_{2}}>\frac{{{\lambda }_{m}}({{\varvec{K}}_{\varvec{\eta }}})}{{{b}_{1}}\left[ 4{{\lambda }_{m}}({{\varvec{K}}_{\varvec{\eta }}}){{\lambda }_{m}}({{\varvec{K}}_{\varvec{\omega }}})-{{c}_{1}}\gamma _{1}^{2} \right] }\\ \end{array}\right. . \end{aligned}$$
(65)

And we can obtain the following:

$$\begin{aligned}&a_2\left\| {{\varvec{z}}_{2}} \right\| _{2}^{2} \le L_2 \le a_3\left\| {{\varvec{z}}_{2}} \right\| _{2}^{2},\nonumber \\&\left\{ \begin{array}{ll} &{} {{a}_{2}}\triangleq \frac{1}{2}\min \{1, c_1,c_2{{\lambda }_{m}}({{\varvec{P}}_{1}})\} \\ &{} {{a}_{3}}\triangleq \frac{1}{2}\max \{1, c_1,c_2a_1\}\\ \end{array}\right. . \end{aligned}$$
(66)

Let \(\varepsilon _1=\sqrt{a_3/a_2},\ \varepsilon _2=(1-\epsilon )b_2/(2a_3)\), and \(\mu =(\sqrt{2}c_2a_1d_{m1})/(\epsilon b_2)\). To achieve both \(\mu <(r/\varepsilon _1)\) and \((1-\epsilon )>0\), we can choose:

$$\begin{aligned} (\sqrt{\frac{2a_3}{a_2}}a_1c_2d_{m})({rb_2})< \epsilon <1. \end{aligned}$$
(67)

Condition (67) can be easily achieved by some proper controller parameters \(\varvec{K_{\eta }},{{\varvec{K}}_{\varvec{\omega }}},\varvec{K_M},\varvec{K}_1,\varvec{K}_{uv}\). For every initial condition that satisfies \(\left\| \varvec{z}_2(t_0)\right\| _2\le (r/\varepsilon _1)\). According to Theorem 4.18 in [29], we have:

$$\begin{aligned}&\left\| \varvec{z}_2\right\| _2 \le \varepsilon _1 \left\| \varvec{z}_2(t_0)\right\| _2 e^{-\varepsilon _2(t-t_0)},\quad \forall t_0\le t\le t_0+T,\nonumber \\&\left\| \varvec{z}_2\right\| _2 \le r,\quad\quad\quad\quad\quad\quad\quad\quad\quad\; \forall t\ge t_0+T. \end{aligned}$$
(68)

This completes the proof.

1.2 Proof of Theorem 2

1.2.1 Property 1

First, we derive an important property which will be used later. Note that,

$$\begin{aligned} \varvec{R}_{B}^{I}({{\varvec{\eta }}_{d}})-\varvec{R}_{B}^{I}(\varvec{\eta })=\varvec{R}_{B}^{I}({{\varvec{\eta }}_{d}})\left[ {{{I}}_{3\times 3}}-{{\left( \varvec{R}_{B}^{I} \right) }^{T}}({{\varvec{e}}_{\varvec{\eta }}}) \right] . \end{aligned}$$
(69)

From (2) and \({{\varvec{e}}_{\varvec{\eta }}}={{\left[ \begin{array}{ccc} {{\varphi }_{e}} &{} {{\theta }_{e}} &{} {{\psi }_{e}} \\ \end{array} \right] }^{T}}\), we have:

$$\begin{aligned}&\ {{\left\| {{\varvec{I}}_{3\times 3}}-{{\left( \varvec{R}_{B}^{I} \right) }^{T}}({{\varvec{e}}_{\varvec{\eta }}}) \right\| }_{F}} \nonumber \\= & {} \ \sqrt{6-2\left( C_{{\psi }_{e}}C_{{\theta }_{e}}-S_{{\psi }_{e}}S_{{\varphi }_{e}}S_{{\theta }_{e}}+C_{{\psi }_{e}}C_{{\varphi }_{e}}+C_{{\varphi }_{e}}C_{{\theta }_{e}} \right) }. \end{aligned}$$
(70)

Applying \(C_{{\alpha }_{1}}C_{{\alpha }_{2}}=[1-2{{S}^{2}}_({{\alpha }_{1}}/2)][1-2{{S}^{2}}_({{\alpha }_{2}}/2)]\), we can transform (70) into:

$$\begin{aligned}&\ \sqrt{6-2\left( C_{{\psi }_{e}}C_{{\theta }_{e}}-S_{{\psi }_{e}}S_{{\varphi }_{e}}S_{{\theta }_{e}}+C_{{\psi }_{e}}C_{{\varphi }_{e}}+C_{{\varphi }_{e}}C_{{\theta }_{e}} \right) } \nonumber \\\le & {} \ \sqrt{8{{S}^{2}}_{\frac{{\psi }_{e}}{2}}+8{{S}^{2}}_{\frac{{\theta }_{e}}{2}}+8{{S}^{2}}_{\frac{{\varphi }_{e}}{2}}+2S_{{\psi }_{e}}S_{{\varphi }_{e}}S_{{\theta }_{e}}} \nonumber \\\le & {} \ \sqrt{2{{\psi }_{e}}^{2}+2{{\theta }_{e}}^{2}+2{{\varphi }_{e}}^{2}+2\left| S{{\psi }_{e}}S{{\varphi }_{e}}S{{\theta }_{e}} \right| }. \end{aligned}$$
(71)

Since \(0\le \left| S_{{\psi }_{e}}S_{{\varphi }_{e}}S_{{\theta }_{e}} \right| \le 1\), we have:

$$\begin{aligned} \left| S_{{\psi }_{e}}S_{{\varphi }_{e}}S_{{\theta }_{e}} \right| \le \frac{{{S}^{2}}_{{\psi }_{e}}+{{S}^{2}}_{{\varphi }_{e}}+{{S}^{2}}_{{\theta }_{e}}}{3}\le \frac{1}{3}\left( {{\psi }_{e}}^{2}+{{\varphi }_{e}}^{2}+{{\theta }_{e}}^{2} \right) . \end{aligned}$$
(72)

1.2.2 The closed-loop system

From (6), define

$$\begin{aligned} {{e}_{t2}}=A_{z}^{B}+{{u}_{Tn}}={{m}^{-1}}F_{az}^{B}-\left[ 1+{{k}_{Tv}}(\varvec{v}_{a}^{B}) \right] {{u}_{Ta}}. \end{aligned}$$
(73)

And from (13)(19)(20)(21)(73), we can establish the following perturbed system:

$$\begin{aligned} {{{\varvec{\dot{e}}}}_{\varvec{v}}}= & {} {{f}_{3}}({{\varvec{e}}_{\varvec{v}}},\varvec{e_\eta },e_{t2}) \nonumber \\= & {} -{{\varvec{K}}_{\varvec{v}}}{{\varvec{e}}_{\varvec{v}}}+\left[ \varvec{R}_{B}^{I}({{\varvec{\eta }}_{d}})-\varvec{R}_{B}^{I}(\varvec{\eta }) \right] \left[ \begin{array}{c} A_{x}^{B} \\ A_{y}^{B} \\ -{{u}_{Tn}} \\ \end{array} \right] -\varvec{R}_{B}^{I}(\varvec{\eta })\left[ \begin{array}{c} 0 \\ 0 \\ {{e}_{t2}} \\ \end{array} \right] . \end{aligned}$$
(74)

From (20)(21)(22)(74) and Property 1, we can obtain:

$$\begin{aligned}&\ {{\left\| {{f}_{3}}({{\varvec{e}}_{\varvec{v}}},\varvec{e_\eta },e_{t2}) -{{f}_{3}}({{\varvec{e}}_{\varvec{v}}},0,0) \right\| }_{2}} \nonumber \\\le & {} \ {{\left\| {{{I}}_{3\times 3}}-{{\left( \varvec{R}_{B}^{I} \right) }^{T}}({{\varvec{e}}_{\varvec{\eta }}}) \right\| }_{F}}{{\left\| {{\left[ \begin{array}{ccc} A_{x}^{B} &{} A_{y}^{B} &{} -{{u}_{Tn}} \\ \end{array} \right] }^{T}} \right\| }_{2}}+{{\left\| {{e}_{t2}} \right\| }_{2}} \nonumber \\\le & {} \ h_2{{\left\| {{\varvec{e}}_{\varvec{\eta }}} \right\| }_{2}}\left( {{\lambda }_{\max }}\left( {{\varvec{K}}_{\varvec{v}}} \right) {{\left\| {{\varvec{e}}_{\varvec{v}}} \right\| }_{2}}+{{h}_{1}} \right) +{{\left\| {{e}_{t2}} \right\| }_{2}}, \end{aligned}$$
(75)

where

$$\begin{aligned} {{d}_{1}}\triangleq {{\left\| \varvec{\dot{v}}_{d}^{I} \right\| }_{2}}+g, \quad h2\triangleq \sqrt{8/3} \end{aligned}$$
(76)

For positive parameters \(c_3,c_4>0\), consider the following Lyapunov candidate:

$$\begin{aligned} {{L}_{3}}=\frac{1}{2}{{\varvec{e}}_{\varvec{v}}}^{T}{{\varvec{e}}_{\varvec{v}}}+c_3{{L}_{2}}+\frac{1}{2}c_4{{e}_{t2}}^{2}. \end{aligned}$$
(77)

The time derivative of \(L_3\) is derived by:

$$\begin{aligned} {{{\dot{L}}}_{3}}= & {} \ \frac{\partial {{L}_{3}}}{\partial {{\varvec{e}}_{\varvec{v}}}}{{f}_{3}}({{\varvec{e}}_{\varvec{v}}},0,0)+\frac{\partial {{L}_{3}}}{\partial {{\varvec{e}}_{\varvec{v}}}}\left[ {{f}_{3}}({{\varvec{e}}_{\varvec{v}}},\varvec{e_\eta },e_{t2})-{{f}_{3}}({{\varvec{e}}_{\varvec{v}}},0,0) \right] \nonumber \\&\ +c_3{{{\dot{L}}}_{2}}+c_4{{e}_{t2}}{{{\dot{e}}}_{t2}}. \end{aligned}$$
(78)

In particular, substituting (24)(63)(73)(74)(75)(76) into (78) and considering that the velocity tracking error has an upper bound (\({{\left\| {{\varvec{e}}_{\varvec{v}}} \right\| }_{2}}\le {{{e}}_{{vM} }}\)), we can obtain:

$$\begin{aligned} {{{\dot{L}}}_{3}}\le & {} \ -{{\lambda }_{\min }}({{\varvec{K}}_{\varvec{v}}})\left\| {{\varvec{e}}_{\varvec{v}}} \right\| _{2}^{2}-c_3(1-\epsilon ){{b}_{2}}\left\| {{\varvec{z}}_{2}} \right\| _{2}^{2}-c_4{{K}_{uT}}{{e}_{t2}}^{2} \nonumber \\&\ +{{\left\| {{\varvec{e}}_{\varvec{v}}} \right\| }_{2}}{{e}_{t2}}+{{h}_{1}}{{h}_{2}}{{\left\| {{\varvec{e}}_{\varvec{\eta }}} \right\| }_{2}}{{\left\| {{\varvec{e}}_{\varvec{v}}} \right\| }_{2}} +{{h}_{2}}{{e}_{vM }}{{\lambda }_{\max }}\left( {{\varvec{K}}_{\varvec{v}}} \right) {{\left\| {{\varvec{e}}_{\varvec{\eta }}} \right\| }_{2}}{{\left\| {{\varvec{e}}_{\varvec{v}}} \right\| }_{2}} \nonumber \\\le & {} \ -{{\varvec{z}}_{3}}^{T}{{\Lambda }_{1}}{{\varvec{z}}_{3}}\nonumber \\\le & {} \ -b_3\left\| {{\varvec{z}}_{3}} \right\| _{2}^{2},\nonumber \\\forall&\ \left\| {{\varvec{z}}_{2}} \right\| _{2} \ge (\sqrt{2}c_2a_1d_{m1})/(\epsilon b_2),\quad 0<\epsilon <1, \end{aligned}$$
(79)

where

$$\begin{aligned} {{\varvec{z}}_{3}}\triangleq & {} \ \left[ \begin{array}{c} {{\left\| {{\varvec{e}}_{\varvec{v}}} \right\| }_{2}} \\ {{\left\| {{\varvec{z}}_{2}} \right\| }_{2}} \\ {{e}_{t2}} \\ \end{array} \right] ,\ {{\Lambda }_{2}}\triangleq \left[ \begin{array}{ccc} {{\lambda }_{\min }}({{\varvec{K}}_{\varvec{v}}}) &{} -\frac{{{h}_{3}}}{2} &{} -\frac{1}{2} \\ -\frac{{{h}_{3}}}{2} &{} {{c}_{3}}(1-\epsilon ){{b}_{2}} &{} 0 \\ -\frac{1}{2} &{} 0 &{} {{c}_{4}}{{K}_{uT}} \\ \end{array} \right] , \nonumber \\ {{h}_{3}}\triangleq & {} \ {{h}_{1}}{{h}_{2}}+{{h}_{2}}{{e}_{vM}}{{\lambda }_{\max }}\left( {{\varvec{K}}_{\varvec{v}}} \right) , \nonumber \\ {{b}_{3}}\triangleq & {} \ {{\lambda }_{\min }}({{\Lambda }_{2}}). \end{aligned}$$
(80)

\({{\dot{L}}_{3}}\) is negative definite when \({{\Lambda }_{2}}\) is positive definite. This condition can be achieved by choosing:

$$\begin{aligned} \left\{ \begin{array}{ll} &{} {{c}_{3}}>\frac{h_{3}^{2}}{{4b_3}{{\lambda }_{\min }}({{\varvec{K}}_{\varvec{v}}})}\\ &{} {{c}_{4}}>\frac{{{c}_{3}}b_3}{{{K}_{uT}}\left( 4{{c}_{3}}b_3{{\lambda }_{\min }}({{\varvec{K}}_{\varvec{v}}})-h_{3}^{2} \right) }\\ \end{array}\right. . \end{aligned}$$
(81)

And we can obtain the following:

$$\begin{aligned}&a_4\left\| {{\varvec{z}}_{3}} \right\| _{2}^{2} \le L_4 \le a_5\left\| {{\varvec{z}}_{3}} \right\| _{2}^{2},\nonumber \\&\left\{ \begin{array}{ll} &{} {{a}_{4}}\triangleq \frac{1}{2}\min \{1, c_3a_2,c_4\} \\ &{} {{a}_{5}}\triangleq \frac{1}{2}\max \{1, c_3a_3,c_4\}\\ \end{array}\right. . \end{aligned}$$
(82)

Let \(\varepsilon _3=\sqrt{a_5/a_4},\ \varepsilon _4=b_3/(2a_5)\). Analogously to that in the proof of Theorem 1, we can have:

$$\begin{aligned}&\left\| \varvec{z}_3\right\| _2 \le \varepsilon _3 \left\| \varvec{z}_3(t_0)\right\| _2 e^{-\varepsilon _4(t-t_0)},\ \forall t_0\le t\le t_0+T,\nonumber \\&\left\| \varvec{z}_3\right\| _2 \le r,\ \forall t\ge t_0+T. \end{aligned}$$
(83)

This completes the proof.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, ZH., Pei, HL. Control Effectiveness Enhancement for the Hovering/Cruising Transition Control of a Ducted Fan UAV. J Intell Robot Syst 105, 89 (2022). https://doi.org/10.1007/s10846-022-01689-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01689-y

Keywords

Navigation