Skip to main content
Log in

Learning to Walk Fast: Optimized Hip Height Movement for Simulated and Real Humanoid Robots

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The linear inverted pendulum model has been used predominantly to generate balanced humanoid walking. This model assumes that the hip height is fixed during the walk. In this paper, generating a fast walk is studied with the main focus on the effect of hip height movement. Our approach is based on modeling the hip height movement and learning its parameters in order to generate a fast walk. The hip height trajectory is generated using Fourier basis functions. The generated trajectory is the input to programmable Central Pattern Generators (CPGs) in order to modulate generated trajectories smoothly. The inverted pendulum model is utilized to model a balanced walking. A numerical approach is presented to control inverted pendulum dynamics. Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is employed to search for appropriate hip height trajectory and walking parameters that optimize walking speed. This approach has been tested not only to obtain fast forward walk but also a fast side walk. Experiments are conducted on both simulated and real NAO robots. The results show that the change from the learned forward walk to learned side walk is performed stably, which confirm the important role of using CPGs. The comparison of the results of the proposed gait model (and development approach) with those obtained using fixed hip height also shows that fixed height walking is slower than variable height walking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vukobratović, M., Juricić, D.: Contribution to the synthesis of biped gait. IEEE Trans. Biomed. Eng. 16(1), 1–6 (1969)

    Article  Google Scholar 

  2. Filipovic, M., Potkonjak, V., Vukobratovic, M.: Humanoid robotic system with and without elasticity elements walking on an immobile/mobile platform. J. Intell. Robot. Syst. Theory Appl. 48, 157–186 (2007)

    Article  Google Scholar 

  3. Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H.: The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 239–246 (2001)

  4. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K.: Biped walking pattern generation by using preview control of zero-moment point. In: IEEE International Conference on Robotics and Automation, ICRA 2003, pp. 1620–1626 (2003)

  5. Harada, K., Kajita, S., Kaneko, K., Hirukawa, H.: An Analytical Method on Real-time Gait Planning for a Humanoid Robot. Int. J. Humanoid Robot. 3(1), 1–19 (2006)

    Article  Google Scholar 

  6. Kuo, A. D., Donelan, J. M., Ruina, A.: Energetic consequences of walking like an inverted pendulum: step-to-step transitions. Exerc. Sport Sci. Rev. 33(2), 88–97 (2005)

    Article  Google Scholar 

  7. Yokoi, K., Kaneko, K., Aist, K. T., Central, T., Ibaraki, T.: Running Pattern Generation for a Humanoid Robot. In: IEEE International Conference on Robotics and Automation, pp. 2755–2761 (2002)

  8. Kajita, S., Nagasaki, T., Kaneko, K., Hirukawa, H.: ZMP-based biped running control. IEEE Robot. Autom. Mag. 14(2), 63–72 (2007)

    Article  Google Scholar 

  9. Tajima, R., Honda, D., Suga, K.: Fast running experiments involving a humanoid robot. In: IEEE International Conference on Robotics and Automation, ICRA’09, pp. 1571–1576 (2009)

  10. Righetti, L., Ijspeert, A. J.: Programmable central pattern generators: an application to biped locomotion control. In: IEEE International Conference on Robotics and Automation, 2006, ICRA 2006., pp. 1585–1590 (2006)

  11. Hansen, N., Müller, S. D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11, 1–18 (2003)

    Article  Google Scholar 

  12. Shafii, N., Abdolmaleki, A., Ferreira, R., Lau, N., Reis, L. P.: Omnidirectional Walking and Active Balance for Soccer Humanoid Robot. in: Progress in Artificial Intelligence, EPIA 13, pp. 283–294 (2013)

  13. Kagami, S., Kitagawa, T., Nishiwaki, K., Sugihara, T., Inaba, M., Inoue, H.: A fast dynamically equilibrated walking trajectory generation method of humanoid robot. Auton. Robots 12(1), 71–82 (2002)

    Article  MATH  Google Scholar 

  14. Glaser, S., Dorer, K.: Trunk Controlled Motion Framework. In: IEEE-RAS International Conference on Humanoid Robotics, In Soccer Humanoid workshop (2013)

  15. Domingues, E., Lau, N., Pimentel, B., Shafii, N., Reis, L., Neves, A.: Humanoid behaviors: from simulation to a real robot..in: Progress in Artificial Intelligence, EPIA 11, pp 352–364. Springer (2011)

  16. Ferreira, R., Reis, L., Moreira, A., Lau, N.: Development of an Omnidirectional Kick for a NAO Humanoid Robot..in: Advances in Artificial Intelligence – IBERAMIA 2012. vol. 7637. 571–580, Berlin Heidelberg (2012)

  17. Shafii, N., Reis, L.P., Lau, N.: Biped Walking using Coronal and Sagittal Movements based on Truncated Fourier Series. In: RoboCup 2010: Robot Soccer World Cup XIV. Vol. 655. 324–335, Berlin Heidelberg (2011)

  18. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge Nonlinear Science Series), p 411 (2003)

  19. Acebrón, J., Bonilla, L., Pérez Vicente, C., Ritort, F., Spigler, R.: The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77(1), 137–185 (2005)

    Article  Google Scholar 

  20. Kagami, S., Nishivaki, K., Inaba, M., Inoue, H.: A Fast Dynamically Equilibrated Walking Trajectory Generation Method of Humanoid Robot. Auton. Robots 12(1), 71–82 (2002)

    Article  MATH  Google Scholar 

  21. MacAlpine, P., Barrett, S., Urieli, D., Vu, V., Stone, P.: Design and optimization of an omnidirectional humanoid walk: A winning approach at the RoboCup 2011 3D simulation competition. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI-12) (2012)

  22. Urieli, D., Macalpine, P., Kalyanakrishnan, S., Bentor, Y., Stone, P.: On Optimizing Interdependent Skills?: A Case Study in Simulated 3D Humanoid Robot Soccer Categories and Subject Descriptors. In: In The 10th International Conference on Autonomous Agents and Multiagent Systems, pp. 769–776 (2011)

  23. Seekircher, A., Stoecker, J., Abeyruwan, S., Visser, U.: Motion capture and contemporary optimization algorithms for robust and stable motions on simulated biped robots. RoboCup 2012: Robot Soccer World Cup XVI., vol. 7500, pp. 213–224. Springer, Berlin Heidelberg (2013)

  24. Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Marnier, B., Serre, J., Maisonnier, B.: Mechatronic design of NAO humanoid. In: Proceedings of the IEEE International Conference on Robotics and Automation (2009), pp. 769–774 (2009)

  25. Boedecker, J., Asada, M.: SimSpark – Concepts and Application in the RoboCup 3D Soccer Simulation League. Auton. Robots, 174–181 (2008)

  26. Farchy, A., Barrett, S., MacAlpine, P., Stone, P.: Humanoid robots learning to walk faster: From the real world to simulation and back. In: Proceedings of the 2013 Int. Conf. Auton. agents multi-agent Syst., pp. 39–46 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Shafii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafii, N., Lau, N. & Reis, L.P. Learning to Walk Fast: Optimized Hip Height Movement for Simulated and Real Humanoid Robots. J Intell Robot Syst 80, 555–571 (2015). https://doi.org/10.1007/s10846-015-0191-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-015-0191-5

Keywords

Navigation