Skip to main content
Log in

The (pqrl) model for stochastic demand under Intuitionistic fuzzy aggregation with Bonferroni mean

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper investigates a hill type economic production-inventory quantity (EPIQ) model with variable lead-time, order size and reorder point for uncertain demand. The average expected cost function is formulated by trading off costs of lead-time, inventory, lost sale and partial backordering. Due to the nature of the demand function, the frequent peak (maximum) and valley (minimum) of the expected cost function occur within a specific range of lead time. The aim of this paper is to search the lowest valley of all the valley points (minimum objective values) under fuzzy stochastic demand rate. We consider Intuitionistic fuzzy sets for the parameters and used Intuitionistic Fuzzy Aggregation Bonferroni mean for the defuzzification of the hill type EPIQ model. Finally, numerical examples and graphical illustrations are made to justify the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allahviranloo, T., & Saneifard, R. (2012). Defuzzification method for ranking fuzzy numbers based on center of gravity. Iranian Journal of Fuzzy Systems, 9, 57–67.

    Google Scholar 

  • Atanassov, K., & Gargov, G. (1989). Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 31, 343–349.

    Article  Google Scholar 

  • Atanassov, K. (1999). Intuitionistic fuzzy sets: Theory and applications. Berlin: Physica Verlag.

    Book  Google Scholar 

  • Atanassov, K. (1986). Intuitionistic fuzzy sets and system. Fuzzy Sets and Systems, 20, 87–96.

    Article  Google Scholar 

  • Atanassov, K. (1994). New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets and Systems, 61, 137–142.

    Article  Google Scholar 

  • Angelov, P. P. (1997). Optimization in an intuitionistic fuzzy environment. Fuzzy Sets and Systems, 86, 299–306.

    Article  Google Scholar 

  • Ayag, Z., Samanlioglu, F., & Bykzkan, G. (2013). A fuzzy QFD approach to determine supply chain management strategies in the dairy industry. Journal of Intelligent Manufacturing, 24, 1111–1122.

    Article  Google Scholar 

  • Bandyopadhyay, S., & Bhattacharya, R. (2015). Finding optimum neighbour for routing based on multi-criteria, multi-agent and fuzzy approach. Journal of Intelligent Manufacturing, 26, 25–42.

    Article  Google Scholar 

  • Banerjee, S., & Roy, T. K. (2010). Probabilistic inventory model with fuzzy cost components and fuzzy random variable. International Journal of Computational and Applied Mathematics, 5, 501–514.

    Google Scholar 

  • Beg, I., & Rashid, T. (2014). Multi-criteria trapezoidal valued intuitionistic fuzzy decision making with choquet, integral based TOPSIS. Opsearch, 51, 98–129.

    Article  Google Scholar 

  • Bellman, R. E., & Zadeh, L. A. (1970). Decision making in a fuzzy environment. Management Science, 17, B141–B164.

    Article  Google Scholar 

  • Beliakov, G., Pradera, A., & Calvo, T. (2007). Aggregation functions: A guide for practitioners. Heidelberg: Springer.

    Google Scholar 

  • Beliakov, G., & Jems, S. (2013). On extending generalized Bonferroni means to Attanasov orthopairs. Fuzzy Sets and Systems, 211, 84–98.

    Article  Google Scholar 

  • Bonferroni, C. (1950). Sulle medie multiple di potenze. Bolletino Mathematical Italiana, 5, 267–270.

    Google Scholar 

  • Ben-Daya, M., & Raouf, A. (1994). Inventory models involving lead time as decision variable. Journal of Operational Research Society, 45, 579–582.

    Article  Google Scholar 

  • Cardenas-Barron, L. E., Smith, N. R., Martinez-Flores, J. L., & Rodriguez-Salvador, M. (2010). Modelling lead time effects on joint inventory and price optimization. International Journal Logistics Economics and Globalisation, 2, 270–291.

    Article  Google Scholar 

  • Cardenas-Barron, L. E., Chung, K. J., & Trevino-Garza, G. (2014). Celebrating a century of the economic order quantity model in honor of Ford Whitman Harris. International Journal of Production Economics, 155, 1–7.

    Article  Google Scholar 

  • Chen, S. M., & Tan, J. M. (1994). Handling multi-criteria fuzzy decision making problems based on vague set theory. Fuzzy Sets and Systems, 67, 163–172.

    Article  Google Scholar 

  • Chuang, B. R., Ouyang, L. Y., & Lin, Y. J. (2004). Impact of defective items on (Q, r, L) inventory model involving controllable setup cost. Yugoslav Journal of Operations Research, 14, 247–258.

    Article  Google Scholar 

  • Dabois, D., Gottwald, S., Hajek, P., Kacprzyk, J., & Prade, H. (2005). Terminological difficulties in fuzzy set theory, the case of intuitionistic fuzzy sets. Fuzzy Sets and Systems, 156, 485–491.

    Article  Google Scholar 

  • Deep, K., Singh, K. P., & Kansal, M. L. (2011). Genetic algorithm based fuzzy weighted average for multi-criteria decision making problems. Opsearch, 48, 96–108.

    Article  Google Scholar 

  • De, S. K. (2013). EOQ model with natural idle time and wrongly measured demand rate. International Journal of Inventory Control and Management, 3, 329–354.

    Google Scholar 

  • De, S. K., Biswas, R., & Roy, A. R. (2000). Some operations on intuitionistic fuzzy sets. Fuzzy Sets and Systems, 114, 477–484.

    Article  Google Scholar 

  • De, S. K., & Goswami, A. (2006). An EOQ model with fuzzy inflation rate and fuzzy deterioration rate when a delay in payment is permissible. International Journal of Systems Science, 37, 323–335.

    Article  Google Scholar 

  • De, S. K., Goswami, A., & Sana, S. S. (2014). An interpolating by pass to Pareto optimality in intuitionistic fuzzy technique for an EOQ model with time sensitive backlogging. Applied Mathematics and Computation, 230, 664–674.

    Article  Google Scholar 

  • De, S. K., & Sana, S. S. (2013). Fuzzy order quantity inventory model with fuzzy shortage quantity and fuzzy promotional index. Economic Modelling, 31, 351–358.

    Article  Google Scholar 

  • De, S. K., & Sana, S. S. (2015). Backlogging EOQ model for promotional effort and selling price sensitive demand—an intuitionistic fuzzy approach. Annals of Operations Research, 233, 57–76.

    Article  Google Scholar 

  • Dymova, L., & Sevastjanov, P. (2011). Operations on intuitionistic fuzzy values in multiple criteria decision making. Scientific Research of the Institute of Mathematics and Computer Science, 1, 41–48.

    Google Scholar 

  • Grzegorzewski, P. (2002). Nearest interval approximation of a fuzzy number. Fuzzy Sets and Systems, 130, 321–330.

    Article  Google Scholar 

  • He, Y. D., Chen, H. Y., Zhou, L. G., Liu, J. P., & Tao, Z. F. (2014a). Intuitionistic fuzzy geometric interaction averaging operators and their application to multi-criteria decision making. Information Sciences, 259, 142–159.

    Article  Google Scholar 

  • He, Y. D., Chen, H. Y., Zhou, L. G., Han, B., & Zhao, Q. Y. (2014b). Generalised Intuitionistic fuzzy geometric interaction operators and their application to decision making. Expert Systems with Applications, 41, 2484–2495.

    Article  Google Scholar 

  • Hong, D. H., & Choi, C. H. (2000). Multicriteria decision making problems based on vague set theory. Fuzzy Sets and Systems, 114, 103–113.

    Article  Google Scholar 

  • Hsu, S. L., & Lee, C. C. (2009). Replenishment and lead time decisions in manufacturer–retailer chains. Transportation Research Part E, 45, 398–408.

    Article  Google Scholar 

  • Jaggi, C. K., & Sharma, A. (2014). Fuzzification of EOQ model with allowable shortage under the condition permissible delay in payments. In Mathematical modeling and application (pp. 239–258).

  • Jakovljevic, Z., Petrovic, P. B., Mikovic, V. D., & Pajic, M. (2014). Fuzzy inference mechanism for recognition of contact states in intelligent robotic assembly. Journal of Intelligent Manufacturing, 25(3), 571–587.

    Article  Google Scholar 

  • Kashif, M., & Shahzad, K. H. H. (2013). Integrated supply chain and product family architecture under highly customized demand. Journal of Intelligent Manufacturing., 24, 1005–1018.

    Article  Google Scholar 

  • Liao, C. J., & Shyu, C. H. (1991). An analytical determination of lead time with normal demand. International Journal of Operation and Production Management, 11, 72–78.

    Article  Google Scholar 

  • Olsson, F. (2014). Analysis of inventory policies for perishable items with fixed lead times and lifetimes. Annals of Operations Research, 217, 399–423.

    Article  Google Scholar 

  • Ouyang, L. Y., Yeh, N. C., & Wu, K. S. (1996). Mixture inventory model with backorders and lost sales for variable lead time. Journal of the Operational Research Society, 47, 829–832.

    Article  Google Scholar 

  • Ouyang, L. Y., & Wu, K. S. (1997). Mixture Inventory model involving variable lead time with a service level constraint. Computers and Operations Research, 24, 875–882.

    Article  Google Scholar 

  • Ouyang, L. Y., & Wu, K. S. (1998). A minimax distribution free procedure for mixed inventory model with variable lead time. International Journal of Production Economics, 56–57, 551–516.

    Google Scholar 

  • Ouyang, L. Y., & Chuang, B. R. (1999). (Q, R, L) inventory model involving quantity discounts and a stochastic backorder rate. Production Planning and Control, 10, 426–433.

    Article  Google Scholar 

  • Ouyang, L. Y., Chuang, B. R., & Wu, K. S. (1999). Optimal inventory policies involving variable lead time with defective items. Journal of the Operational Research Society of India, 36, 374–389.

    Google Scholar 

  • Ouyang, L. Y., Chuang, B. R., & Lin, Y. J. (2003). Impact of backorder discounts on periodic review inventory model. Information and Management Sciences, 14, 1–13.

    Google Scholar 

  • Ramli, N., & Mohamad, D. (2009). A comparative analysis of centroid methods in ranking fuzzy numbers. European Journal of Scientific Research, 28, 492–501.

    Google Scholar 

  • Shin, S. J., Kim, D. B., Shao, G., Brodsky, A., & Lechevalier, D. (2015). Developing a decision support system for improving sustainability performance of manufacturing processes. Journal of Intelligent Manufacturing. doi:10.1007/s10845-015-1059-z.

    Article  Google Scholar 

  • Singh, A., Datta, S., Mahapatra, S. S., Singha, T., & Majumdar, G. (2013). Optimization of bead geometry of submerged arc weld using fuzzy based desirability function approach. Journal of Intelligent Manufacturing, 24, 35–44.

    Article  Google Scholar 

  • Takeuti, G., & Tinani, S. (1984). Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. Journal of Symbolic Logic, 49, 851–866.

    Article  Google Scholar 

  • Voskoglou, M. G. (2013). Application of the centroid technique for measuring learning skills. Journal of Mathematical Sciences and Mathematics Education, 8, 34–45.

    Google Scholar 

  • Wang, Z. X., Liu, Y. J., Fan, Z. P., & Feng, B. (2009). Ranking L–R fuzzy number based on deviation degree. Information Sciences, 179, 2070–2077.

    Article  Google Scholar 

  • Wei, G. W., Wang, H. J., & Lin, R. (2011). Application of correlation to interval valued intuitionistic fuzzy multiple attribute decision making with incomplete weight information. Knowledge and Information Systems, 26, 337–349.

    Article  Google Scholar 

  • Wei, G. W. (2010). Some induced geometric aggregation operators with intuitionistic fuzzy information and their application to group decision making. Applied Soft Computing, 10, 423–431.

    Article  Google Scholar 

  • Wu, K. S. (2000). (Q, r) inventory model with variable lead time when the amount received is uncertain. Information and Management Sciences, 11, 81–94.

    Google Scholar 

  • Xia, M. M., Xu, Z. S., & Zhu, B. (2011). Generalized intuitionistic fuzzy Bonferroni means. International Journal of General Systems, 27, 23–47.

    Article  Google Scholar 

  • Xia, M. M., Xu, Z. S., & Zhu, B. (2013). Geometric Bonferroni means with their application in multi-criteria decision making. Knowledge Based Systems, 40, 88–100.

    Article  Google Scholar 

  • Xu, Z. S. (2007). Intuitionistic fuzzy aggregation operations. IEEE Transactions on Fuzzy Systems, 15, 1179–1187.

    Article  Google Scholar 

  • Xu, Z. S., & Hu, H. (2010). Projection models for intuitionistic fuzzy multiple attribute decision making. International Journal of Information Technology and Decision Making, 9, 267–280.

    Article  Google Scholar 

  • Xu, Z. S., & Yager, R. R. (2006). Some geometric aggregation operators based on intuitionistic fuzzy sets. International Journal of General Systems, 35, 417–433.

    Article  Google Scholar 

  • Xu, Z. S., & Yager, R. R. (2011). Intuitionistic fuzzy Bonferroni means. IEEE Transactions on Fuzzy Cybernetics, Man and Cybernetics-Part-B, 41, 568–578.

    Article  Google Scholar 

  • Yager, R. R. (1981). A procedure for ordering fuzzy subsets of the unit interval. Information Sciences, 24, 143–161.

    Article  Google Scholar 

  • Yuan, B., Zhang, C., & Shao, X. (2015). A late acceptance hill-climbing algorithm for balancing two-sided assembly lines with multiple constraints. Journal of Intelligent Manufacturing, 26, 159–168.

    Article  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8, 338–356.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shib Sankar Sana.

Appendices

Appendix 1

Some more definitions over IFBM (Xu and Yager 2011):

Definition 12

Let \(A_{i}(i=1,2,\ldots ,n)\) be a set of nonnegative numbers and \(p,q\ge 0\), then the Bonferroni mean is given by the following function.

$$\begin{aligned}&B^{p,q}(A_1,A_2,\ldots ,A_n)\nonumber \\&\quad =\left( \begin{array}{l}\frac{1}{n(n-1)}\sum _{i, j=1,i\ne j}^{n}A_{i}^{p}A_{j}^{q}\end{array}\right) ^{\frac{1}{p+q}} \end{aligned}$$
(62)

Definition 13

Let \(A_{i}=\langle \mu _{A_i},\nu _{A_i}\rangle \epsilon ~ \texttt {IFNs}(X)(i=1,2,\ldots ,n)\) and \(p,q\ge 0\), then Intuitionistic fuzzy interaction Bonferroni mean (IFIBM) is defined as

$$\begin{aligned}&{} \textit{IFIBM}^{p,q}(A_1,A_2,\ldots ,A_n)\nonumber \\&\quad =\left( \begin{array}{l}\frac{1}{n(n-1)} \bigoplus _{i, j=1,i\ne j}^{n}A_{i}^{p}\widehat{\bigotimes } A_{j}^{q}\end{array}\right) ^{\frac{1}{p+q}} \end{aligned}$$
(63)

where \(A_{i}^{p}=\langle (1-\mu _{A_i})^{p}-(1-\mu _{A_i}-\nu _{A_i})^{p}, 1-(1-\nu _{A_i})^{p}\rangle \) and \(A_{j}^{q}=\langle (1-\mu _{A_i})^{q}-(1-\mu _{A_i}-\nu _{A_i})^{q}, 1-(1-\nu _{A_i})^{q}\rangle \) by Eq. (29). Now,

\(\textit{IFIBM}^{p,q}(A_1,A_2,\ldots ,A_n)=\langle (1-(\prod _{i,j=1,i\ne j}^{n}((1-(1-\nu _{A_i})^{p}(1-\nu _{A_j})^{q}+ \) \((1-\nu _{A_{i}}-\nu _{A_{j}})^{p}(1-\mu _{A_{i}}-\nu _{A_{j}})^{q})))^{\frac{1}{n(n-1)}} +\) \((\prod _{i,j=1,i\ne j}^{n}((1-\mu _{A_i}-\nu _{A_j})^{q}(1-\mu _{A_i}-\nu _{A_j})^{q}))^{\frac{1}{n(n-1)}})^{\frac{1}{p+q}}-((\prod _{i,j=1,j\ne j}^{n}((1-\mu _{A_i}-\nu _{A_j})^{p}(1-\mu _{A_i}-\nu _{A_j})^{q}))^{\frac{1}{n(n-1)}})^{\frac{1}{p+q}},\) \(1-(1-(\prod _{i,j=1,j\ne j}^{n}((1-(1-\nu _{A_i})^{p}(1-\nu _{A_j})^{q}+ (1-\nu _{A_i}-\nu _{A_j})^{p}(1-\mu _{A_i}-\nu _{A_j})^{q})))^{\frac{1}{n(n-1)}} +(\prod _{i,j=1,j\ne j}^{n}((1-\mu _{A_i}-\nu _{A_j})^{q}(1-\mu _{A_i}-\nu _{A_j})^{q}))^{\frac{1}{n(n-1)}})^{\frac{1}{p+q}}\rangle (A.2)\)

Definition 14

Let \(A_{i}=\langle \mu _{A_i},\nu _{A_i}\rangle \epsilon ~ \texttt {IFNs}(X)(i=1,2,\ldots ,n)\) and \(p,q\ge 0, w=(w_{1}, w_2,\ldots ,w_n)^{T}\) is the weighting vector of \(A_i\) with \(w_i\epsilon [0,1]\) and \(\sum _{i=1}^{n}w_i=1\), then the weighted Intuitionistic fuzzy interaction Bonferroni mean (WIFIBM) is defined as

$$\begin{aligned}&{\textit{WIFIBM}}^{p,q}(A_1,A_2,\ldots ,A_n)\\&\quad =\left( \begin{array}{c}\frac{1}{n(n-1)}\bigoplus _{i, j=1,i\ne j}^{n}(nw_i A_{i})^{p}\widehat{\bigotimes } (nw_j A_{j})^{q}\end{array}\right) ^{\frac{1}{p+q}} \end{aligned}$$

where \(A_{i}^{p}=\langle (1-\mu _{A_i})^{p}-(1-\mu _{A_i}-\nu _{A_i})^{p},1-(1-\nu _{A_i})^{p}\rangle \) and \(A_{j}^{q}=\langle (1-\mu _{A_i})^{q}-(1-\mu _{A_i}-\nu _{A_i})^{q},1-(1-\nu _{A_i})^{q}\rangle \) by Eq. (29)

Appendix 2

Here, we have introduced a LINGO 8.0 programming and its outputs: (We note that, if the value of several functions are zero then reset the functions with appropriate sign and proceed as usual)

  1. Step 1:

    MIN\(=\)Z;

  2. Step 2:

    Z2\(=\)F1*S1 \(+\) F2*S2 \(+\) F3*S3 \(+\) F4*S4 \(+\) F5*S5 \(+\) F7*S7 \(+\) F8*S8 \(+\) F9*S9 \(+\) F10*S10 \(+\) F11*S11\(+\)

  3. Step 3:

    F12*S12 \(+\) F13*S13 \(+\) F14*S14 \(+\) F;Z1\(=\) F6*S6;Z\(=\)Z2 - Z1;

  4. Step 4:

    SM\(=\)60;LM\(=\)12;DEL\(=\)1000;GAMA\(=\)5;PI\(=\)8;PI0\(=\)20; E\(=\)0.001; M\(=\)100;MU\(=\)15;SIGMA\(=\)(5) \({^{\wedge }}\) 0.5;K\(=\)1.4;

  5. Step 5:

    S1\(=\)(6*A*R*L*L - 3*B*L*R*R \(+\) 2*C*R\(^{\wedge }\)3)/(6*L \(^{\wedge }\)3);

  6. Step 6:

    S2\(=\)(6*A*R*R*L*L - 4*B*L*R\(^{\wedge }\)3 \(+\) 3*C*R\(^{\wedge }\)4)/(12*L\(^{\wedge }\)4);

  7. Step 7:

    S3\(=\)(6*A*L*L*(P*L - R) - 3*B*L*(P\(^{\wedge }\)2*L\(^{\wedge }\)2 - R\(^{\wedge }\)2) \(+\) 2*C*(P\(^{\wedge }\)3*L\(^{\wedge }\)3 - R\(^{\wedge }\)3))/(6*L\(^{\wedge }\)3);

  8. Step 8:

    S4\(=\)(6*A*L*L*(P\(^{\wedge }\)2*L\(^{\wedge }\)2 - R\(^{\wedge }\)2) - 4*B*L*(P\(^{\wedge }\)3*L\(^{\wedge }\)3 - R\(^{\wedge }\)3) \(+\) 3*C*(P\(^{\wedge }\)4*L\(^{\wedge }\)4 - R\(^{\wedge }\)4))/(12*L\(^{\wedge }\)4);

  9. Step 9:

    S5\(=\)A* @ log(P*L/R) - B*(P - R/L) \(+\) 0.5*C*(P\(^{\wedge }\)2*L\(^{\wedge }\)2 - R\(^{\wedge }\)2)/(L\(^{\wedge }\)2);

  10. Step 10:

    S6\(=\) - (P*P*C - P*B \(+\) A)*@log((E*L)/(P*L - R)) \(+\) (2*P*C - B)*(P - R/L) - 0.5*C*(P*L - R)\(^{\wedge }\)2/(L\(^{\wedge }\)2);

  11. Step 11:

    S7\(=\)(6*A*P - 3*B*P\(^{\wedge }\)2 \(+\) 2*C*P\(^{\wedge }\)3)/6;S8\(=\)(6*A*P\(^{\wedge }\)2 - 4*B*P\(^{\wedge }\)3 \(+\) 3*C*P\(^{\wedge }\)4)/12;

  12. Step 12:

    S9\(=\)A*@log(P/E) - B*P \(+\) 0.5*C*P*P;

  13. Step 13:

    S10\(=\)(- P*P*C \(+\) P*B - A)*@log(E/P) \(+\) (- 2*P*C \(+\) B)*P \(+\) 0.5*C*P*P;

  14. Step 14:

    S11\(=\)(6*A*(M-P) - 3*B*(M\(^{\wedge }\)2 - P\(^{\wedge }\)2) \(+\) 2*C*(M\(^{\wedge }\)3 - P\(^{\wedge }\)3))/6;

  15. Step 15:

    S12\(=\)(6*A*(M\(^{\wedge }\)2 - P\(^{\wedge }\)2) - 4*B*(M\(^{\wedge }\)3 - P\(^{\wedge }\)3) \(+\) 3*C*(M\(^{\wedge }\)4 - P\(^{\wedge }\)4))/12;

  16. Step 16:

    S13\(=\)A*@log(M/P) - B*(M-P) \(+\) 0.5*C*(M\(^{\wedge }\)2 - P\(^{\wedge }\)2);

  17. Step 17:

    S14\(=\)(P*P*C - P*B \(+\) A)*@log((M - P)/E) \(+\) (2*P*C - B)*(M - P) \(+\) 0.5*C*(M - P)\(^{\wedge }\)2;

  18. Step 18:

    A\(=\)3*(10*MU\(^{\wedge }\)2 \(+\) 10*SIGMA\(^{\wedge }\)2 \(+\) 3*M\(^{\wedge }\)2 - 12*MU*M)/(M\(^{\wedge }\)3);

  19. Step 19:

    B\(=\)12(15*MU\(^{\wedge }\)2 \(+\) 15*SIGMA\(^{\wedge }\)2 \(+\) 3*M\(^{\wedge }\)2 - 16*MU*M)/(M\(^{\wedge }\)4);

  20. Step 20:

    C\(=\)30*(6*MU\(^{\wedge }\)2 \(+\) 6*SIGMA\(^{\wedge }\)2 \(+\) M\(^{\wedge }\)2 - 6*MU*M)/(M\(^{\wedge }\)5); L\(=\)0.1;

  21. Step 21:

    D\(=\)(6*A*M\(^{\wedge }\)2 - 4*B*M\(^{\wedge }\)3 \(+\) 3*C*M\(^{\wedge }\)4)/12;R\(=\) MU*L \(+\) K*SIGMA*L\(^{\wedge }\)0.5;

  22. Step 22:

    F1\(=\)LM*R*L;F2\(=\)0.5*LM*L*L;F3\(=\)0.5*PI*L*(L*P - 4*R);F4\(=\)PI*L*L;F5\(=\)0.5*(LM \(+\) PI)*R*R;

  23. Step 23:

    F6\(=\)0.5*PI*(L*P - R)\(^{\wedge }\)2;F7\(=\)0.5*LM*L*(L*P - 2*R);F8\(=\)F2;

  24. Step 23:

    F9\(=\)0.5*LM*((Q \(+\) R)\(^{\wedge }\)2 - R*R);F10\(=\)0.5*LM*((Q \(+\) R)\(^{\wedge }\)2 \(+\) 2*R*L*P-L\(^{\wedge }\)2*P\(^{\wedge }\)2);

  25. Step 24:

    F11\(=\)0.5*(PI \(+\) PI0)*L*(4*SM \(+\) 3*L*P - 4*R);F12\(=\)2*L*L*(PI \(+\) PI0);

  26. Step 25:

    F13\(=\)0.5*R*R*(LM \(+\) PI \(+\) PI0);

  27. Step 26:

    F14\(=\)0.5*(PI \(+\) PI0)*(SM*SM \(+\) 4*L*P*SM \(+\) 3*P*P*L*L - 2*R*SM - 2*R*L*P);

  28. Step 27:

    F\(=\)DEL*(GAMA)\(^{\wedge }\)( - L);

  • Local optimal solution found at iteration: 262

  • Objective value: 965.2966

  • \({\text {Z}} = 965.2966\), \({\text {P}}= 99.99900\), \({\text {D}}= 175.6337\), \({\text {Q}} =4.595212\), \({\text {R}}=2.489949\), \({\text {F1}} = 2.987939\), \({\text {S1}}=0.7526193\), \({\text {F2}} =0.6000000{\text {E}}\!-\!01\), \({\text {S2}}=8.144608\), \({\text {F3}} =0.1604087{\text {E}}\!-\!01\), \({\text {S3}}=0.2473798\), \({\text {F4}}=0.8000000{\text {E}}\!-\!01\); \(S4=6.855310\), \({\text {F5}}=61.99848\), \({\text {S5}}=0.7992532{\text {E}}\!-\!02\), \({\text {F6}}=225.5974\), \({\text {S6}}=0.1088008{\text {E}}\!-\!01\), \({\text {F7}}=3.012001\), \(S7=0.9999992\), \({\text {F8}}=0.6000000{\text {E}}\!-\!01\), \({\text {S8}}=14.99992\), \({\text {F9}}= 263.9980\), \({\text {S9}}=0.4154986\), \({\text {F10}} =0.4314534\), \({\text {S10}}=0.1595342{\text {E}}\!-\!01\), \({\text {F11}}=364.0559\), S11=0.8156408E-06,F12=0.5600000 \({\text {S12}}=0.8156367{\text {E}}\!-\!04\), \({\text {F13}}=123.9970\), \({\text {S13}}=0.8156449{\text {E}}\!-\!08\), \({\text {F14}}= 83319.29\), \({\text {S14}}=0.00\), \({\text {F}}=851.3399\), \({\text {A}} =0.4281708{\text {E}}\!-\!01\), \({\text {B}}=0.1129025{\text {E}}\!-\!02\), \({\text {C}} =0.7090249{\text {E}}\!-\!05\)

Appendix 3

Convergent Analysis of the proposed Algorithm

  1. Step 1:

    The crisp model is convergent because the parameters associated to it are bounded with some practical assumptions.

  2. Step 2:

    In the assumptions of triangular membership and non-membership functions for the parameters, it is noted that they must intersect at some points. In our study we have the member and non-member of the parameter r as follows: \(\mu _{r}(r) =\left\{ \begin{array}{ll}\frac{r-r_L}{r_R-r_L} &{}\;\; \texttt {for}~ r_L\le r\le r_C\\ \frac{r_R-r}{r_R-r_C} &{}\;\; \texttt {for}~ r_C\le r\le r_R\\ 0 &{}\;\; \texttt {for} ~~\texttt {elsewhere}\end{array}\right\} \) and \(\nu _{r}(r)=\left\{ \begin{array}{ll}\frac{r_C-r}{r_C-r_{L}^{\prime }} &{}\;\; \texttt {for}~ r_{L}^{\prime }\le r\le r_C\\ \frac{r -r_C}{r_{R}^{\prime }-r_C} &{}\;\; \texttt {for}~ r_C\le r\le r_{R}^{\prime }\\ 0 &{}\;\; \texttt {for} ~~\texttt {elsewhere}\end{array}\right\} \) respectively. To get an intersection we write: \(\frac{r-r_L}{r_R-r_L}=\frac{r_C-r}{r_C-r_{L}^{\prime }}\rightarrow r =\frac{r_C r_Rr_L r_{L}^{\prime }}{r_C+r_R-r_L-r_{L}^{\prime }}\) and \(\frac{r_R-r}{r_R-r_C}=\frac{r-r_C}{r_{R}^{\prime } - r_C }\rightarrow r=\frac{r_R r_{R}^{\prime }-r_{C}^{2}}{r_R + r_{R}^{\prime }-2r_C}\).So the convergent region is the interval \([ \frac{r_R r_{C}-r_{L}r_{L}^{\prime }}{r_R+ r_{C}-r_L -r_{L}^{\prime }},\frac{r_R r_{R}^{\prime }-r_{C}^{2}}{r_R + r_{R}^{\prime }-2r_C}]\). As \(r_{R}^{\prime }\rightarrow r_R \) and \(r_{L}^{\prime }\rightarrow r_L\), this interval reduces to \([ \frac{r_R r_{C}-r_{L}^{2}}{r_R+ r_{C}-2r_L},\frac{ r_{R}^{2}-r_{C}^{2}}{2r_R-2r_C}]\). Again, as \(r_R\rightarrow r_C\leftarrow r_L\), this interval reduces to \([ \frac{r_R r_{C}-r_{C}^{2}}{2(r_R-r_C)},\frac{ r_{R}^{2}-r_{C}^{2}}{2(r_R-r_C)}]\Rightarrow r\rightarrow {r_C}\). Hence r is convergent. Similarly, we find for the other parameters also.

  3. Step 3:

    The probability density function of the demand rate is given by \(f(x)=\left\{ \begin{array}{cc} a-bx+cx^{2}, &{} 0\le x\le M\\ 0, &{} elsewhere \end{array}\right\} \) where \(a=\frac{3}{M^{3}}[10\mu ^{2}+10\sigma ^{2}+3M^{2}-12\mu M], b=\frac{12}{M^{4}}[15\mu ^{2}+15\sigma ^{2}+3M^{2}-16\mu M]\), \(c=\frac{30}{M^{5}}[6\mu ^{2}+6\sigma ^{2}+M^{2}-6\upmu M], \mu \) is the mean and \(\sigma \) is the standard deviation of the given distribution respectively. For fuzzy environment we can assume the probability density function of the demand rate as \(\phi (x)=\left\{ \begin{array}{cc} a+bx-cx^{2}, &{} 0\le x\le M\\ 0, &{} elsewhere \end{array}\right\} \). So the intersections between f(x) and \(\phi (x)\) are given by \(a-b x+cx^{2}=a+bx-cx^{2}\Rightarrow bx=cx^{2}\Rightarrow x=0, b/c\). Thus, two density functions must intersect at least one point. Hence it is convergent.

  4. Step 4:

    All the parameters associated with the fuzzy model have lower and upper bounds. Therefore, the objective function has upper and lower bounds by its virtue. If L and U are the lower and upper bounds of the objective function then, as per assumptions, the membership and non membership functions of the objective function is given by \( \mu (Z)=\left\{ \begin{array}{ll}1 &{} \quad \texttt {if}~ Z\le L\\ \theta _{1}e^{-\frac{1}{2}\big (\frac{Z-L}{U-L}\big )^{2}} &{} \quad \texttt {if}~ L\le Z\le U\\ 0 &{} \quad \texttt {if} Z\ge U\end{array}\right\} \) and \( \nu (Z) =\left\{ \begin{array}{ll}1 &{} \quad \texttt {if}~ Z\le L\\ \theta _{2}\sqrt{\big (\frac{U-L}{2}\big )^{2}-\big (Z-\frac{U+L}{2}\big )^{2}} &{} \quad \texttt {if}~ L\le Z\le U\\ 1 &{} \quad \texttt {if} Z\ge U\end{array}\right\} \) respectively. Now to get an intersection we must write \(\theta _{1} e^{-\frac{1}{2}\big (\frac{Z-L}{U-L}\big )^{2}}=\theta _{2}\sqrt{ \big (\frac{U-L}{2}\big )^{2}-\big (Z-\frac{U+L}{2}\big )^{2}}\Rightarrow \big (\frac{Z-L}{U-L}\big )^{2}=\ln |\frac{\theta _1}{\theta _2}|-\ln | \big (\frac{U-L}{2}\big )^{2}- \big (Z-\frac{U+L}{2}\big )^{2}|\Rightarrow Z^2-2LZ+(U-L)^2 \ln |Z(U+L)-Z^2 -UL| +L^2-(U-L)^2 \ln |\frac{\theta _1}{\theta _2}|=0\). The above equation has at least one root because, as \(U\rightarrow L\) the above implies \(Z^2 -2LZ+L^2=0\Rightarrow Z=L\). Hence the objective function is convergent.

  5. Step 5:

    Since the model has been solved under three cases namely, (i) \(S(z)< BM\), (ii) \(S(z)=BM \) and (iii) \(S(z)>BM\) so the score values of the objective function must be bounded below, around and above the Bonferroni mean (BM) respectively. Hence the solutions are convergent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, S.K., Sana, S.S. The (pqrl) model for stochastic demand under Intuitionistic fuzzy aggregation with Bonferroni mean. J Intell Manuf 29, 1753–1771 (2018). https://doi.org/10.1007/s10845-016-1213-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-016-1213-2

Keywords

Navigation