Skip to main content
Log in

Separation of the bulk and grain boundary contributions to the total conductivity of solid lithium-ion conducting electrolytes

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The transport properties of lithium-ion conducting Li3xLa2/3-xTiO3 are studied for bulk and grain-boundary effects. This paper introduces a procedure for investigating bulk and grain-boundary polarization contributions using electrochemical impedance spectroscopy (EIS) and subsequent analysis via the distribution function of relaxation times (DRT) [1]. The frequency range of impedance spectroscopy is extended up to 120 MHz to resolve all conductivity contributions occurring in a polycrystalline solid electrolyte. Intra grain (bulk) and inter grain (grain boundary) conductivity contributions are separated using (i) a systematic variation of solid electrolyte contacting, (ii) two different solid electrolyte microstructures and activation energies were determined using adequate equivalent circuit models. Finally, these results are supported by SEM analysis, revealing different grain size distributions and different contents of inhomogeneities in Li3xLa2/3-xTiO3 solid electrolytes sintered at 1400°C and at 1450°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Schichlein, A.C. Müller, M. Voigts, A. Krügel, E. Ivers-Tiffée, Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells. J Appl Electrochem 32, 875–882 (2002)

    Article  Google Scholar 

  2. Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, M. Wakihara, High ionic conductivity in lithium lanthanum titanate. Solid State Commun 86(10), 689–693 (1993)

    Article  Google Scholar 

  3. J. Fu, Superionic conductivity of glass-ceramics in the system Li2O-Al2O3-TiO2-P2O5. Solid State Ionics 96, 195–200 (1997)

    Article  Google Scholar 

  4. R. Murugan, V. Thangadurai, W. Weppner, Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed Engl 46(41), 7778–81 (2007)

    Article  Google Scholar 

  5. D.M. Bernardi, J.Y. Go, Analysis of pulse and relaxation behavior in lithium-ion batteries. J Power Sources 196(1), 412–427 (2011)

    Article  Google Scholar 

  6. S. Stramare, V. Thangadurai, W. Weppner, Lithium lanthanum titanates: a review. Chem Mater 15(21), 3974–3990 (2003)

    Article  Google Scholar 

  7. P. Abelard, J.F. Baumard, Study of the dc and ac electrical properties of an yttria-stabilized zirconia single crystal [(ZrO2)0.88-(Y2O3)0.12]. Phys Rev B 26(2), 1005–1017 (1982)

    Article  Google Scholar 

  8. J.E. Bauerle, Study of solid electrolyte polarization by a complex admittance method. J Phys Chem Solids 30, 2657–2670 (1969)

    Article  Google Scholar 

  9. I.D. Raistrick, C. Ho, R.A. Huggins, Ionic conductivity of some lithium silicates and aluminosilicates. J Electrochem Soc 123(10), 1469–1476 (1976)

    Article  Google Scholar 

  10. R. de Levie, The influence of surface roughness of solid electrodes on electrochemical measurements. Electrochim Acta 10, 113–130 (1965)

    Article  Google Scholar 

  11. L. Nyikos, T. Pajkossy, Fractal dimension and fractional power frequency-dependent impedance of blocking electrodes. Electrochim Acta 30(11), 1533–1540 (1985)

    Article  Google Scholar 

  12. K.J. Lee, S.Y. Lee, P. Nash, “Li-Ni (Lithium-Nickel),” in Binary Alloy Phase Diagrams, 2nd ed. T.B. Massalski, Ed. ASM International, 1990, pp. 2450–2453

  13. A.D. Pelton, “Au-Li (Gold-Lithium),” in Binary Alloy Phase Diagrams, 2nd ed. T. B. Massalski, Ed. ASM International, 1990, pp. 387–389

  14. A. Ruiz, Electrical properties of La1.33xLi3xTi2O6 (0.1 < x < 0.3). Solid State Ionics 112(3–4), 291–297 (1998)

    Article  Google Scholar 

  15. C. Uhlmann, P. Braun, J. Illig, A. Weber, E. Ivers-Tiffée, Interface and grain boundary resistance of a lithium lanthanum titanate (Li3xLa2/3-xTiO3, LLTO) solid electrolyte. J Power Sources 307, 578–586 (2016)

    Article  Google Scholar 

  16. B.A. Boukamp, A linear kronig-kramers transform test for immittance data validation. J Electrochem Soc 142(6), 1885–1894 (1995)

    Article  Google Scholar 

  17. M. Schönleber, D. Klotz, E. Ivers-Tiffée, A method for improving the robustness of linear kramers-kronig validity tests. Electrochim Acta 131, 20–27 (2014)

    Article  Google Scholar 

  18. “Kramers-Kronig Validity Test Lin-KK for Impedance Spectra.” [Online]. Available: https://www.iam.kit.edu/wet/english/Lin-KK.php

  19. J. Illig, M. Ender, T. Chrobak, J.P. Schmidt, D. Klotz, E. Ivers-Tiffée, Separation of charge transfer and contact resistance in LiFePO4-cathodes by impedance modeling. J Electrochem Soc 159(7), A952–A960 (2012)

    Article  Google Scholar 

  20. M. Schönleber, E. Ivers-Tiffée, Approximability of impedance spectra by RC elements and implications for impedance analysis. Electrochem Commun 58, 15–19 (2015)

    Article  Google Scholar 

  21. T. Salkus, E. Kazakevicius, A. Kezionis, A.F. Orliukas, J.C. Badot, O. Bohnke, Determination of the non-Arrhenius behaviour of the bulk conductivity of fast ionic conductors LLTO at high temperature. Solid State Ionics 188, 69–72 (2011)

    Article  Google Scholar 

  22. O. Bohnke, J. Emery, J.L. Fourquet, Anomalies in Li+ ion dynamics observed by impedance spectroscopy and 7Li NMR in the perovskite fast ion conductor (Li3xLa2/3-x1/3-2x)TiO3. Solid State Ionics 158, 119–132 (2003)

    Article  Google Scholar 

  23. F. Aguesse, J.M. López Del Amo, V. Roddatis, A. Aguadero, J.A. Kilner, Enhancement of the grain boundary conductivity in ceramic Li0.34La0.55TiO3 electrolytes in a moisture-free processing environment. Adv Mater Interfaces 1(7), 1–9 (2014)

    Article  Google Scholar 

Download references

Acknowledegments

The authors gratefully acknowledge Daniel Gil-Gaviria for continuous help with the automation of the high frequency impedance measurement setup. Sincere thanks are given to Jacob Packham for proofreading the manuscript and Michael Schönleber for the valuable discussions. The authors greatly acknowledge the funding of the BMBF project 03X4634D “Meet Hi-EnD” and the follow-up BMBF project 03XP0026G “FELIZIA”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Braun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, P., Uhlmann, C., Weber, A. et al. Separation of the bulk and grain boundary contributions to the total conductivity of solid lithium-ion conducting electrolytes. J Electroceram 38, 157–167 (2017). https://doi.org/10.1007/s10832-016-0061-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-016-0061-y

Keywords

Navigation