Skip to main content
Log in

Study of diffuse PhaseTransition behavior in Bi and Li Co-substituted barium titanate ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The effect of Bi and Li co-substitution in BaTiO3 ceramics on its structural, dielectric and ferroelectric properties has been investigated. Bi and Li co-substituted BaTiO3 with general formula Ba(1-x)(Bi,Li)xTiO3 (x = 0, 0.02, 0.04 and 0.08) is synthesized by solid state reaction method using microwave heating. The XRD patterns revealed that the single phase tetragonal structure with space group P4mm is formed. The Raman study also shows that the prepared samples have tetragonal symmetry. The frequency and temperature dependent dielectric study on the above set of ceramics were carried out at four different frequencies (1 kHz, 10 kHz, 100 kHz and 1 MHz) and in the temperature range of 30–250 °C. The results reveal that the samples are exhibiting diffused phase transition, and there is a clear deviation from normal Curie–Weiss law. The diffused phase transition property in Bi and Li co-substituted BaTiO3 ceramics make it more attractive for technological applications. The diffuseness is analyzed using a phenomenological theory of diffuse ferroelectric phase transitions. The room temperature P-E hysteresis loops of all these ceramic samples are investigated. The results show that remnant and spontaneous polarization has decreased with an increase of Bi and Li concentrations. This could be the result of an increased in domain pinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Daniel, R. Appleby, N.K. Ponon, K.S.K. Kwa, S. Ganti, U. Hannemann, P.K. Petrov, N.M. Alford, A. O’Neill, Ferroelectric properties in thin film barium titanate grown using pulsed laser deposition. J. Appl. Phys. 116, 124105 (2014)

    Article  Google Scholar 

  2. S. Chikada, K. Hirose, T. Yamamoto, Jpn, analysis of local environment of Fe ions in hexagonal BaTiO3. J. Appl. Phys. 49, 091502 (2010)

    Article  Google Scholar 

  3. G. Yang, Z. Yue, T. Sun, J. Zhao, Z. Yang, Longtu li, investigation of ferroelectric phase transition for modified barium titanate in multilayer ceramic capacitors by in situ Raman scattering and dielectric measurement. Appl. Phys. A Mater. Sci. Process. 91, 119–125 (2008)

    Article  Google Scholar 

  4. P.S. Dobal, A. Dixit, R.S. Katiyar, Z. Yu, R. Guo, A.S. Bhalla, Micro-Raman scattering and dielectric investigations of phase transition behavior in the BaTiO3–BaZrO3 system. J. Appl. Phys. 89, 8085 (2001)

    Article  Google Scholar 

  5. N. Baskaran, A. Ghule, C. Bhongale, R. Murugan, H. Chang, Phase transformation studies of ceramic BaTiO3 using thermo-Raman and dielectric constant measurements. J. Appl. Phys. 91, 10003 (2002)

    Article  Google Scholar 

  6. J. Valasek, Piezo-electric and allied phenomena in rochelle salt. Phys. Rev. 17, 475–481 (1921)

    Article  Google Scholar 

  7. N.C. Sharma, E.R. McCartney, The dielectric properties of pure barium titanate as a function of grain size. J. Aust. Ceram. Soc. 10, 16–20 (1974)

    Google Scholar 

  8. K. Kinoshinta, A. Yamaji, Grain-size effects on dielectric properties in barium titanate. J. Appl. Phys. 47, 371–374 (1976)

    Article  Google Scholar 

  9. Z.-G. Ye, Relaxor ferroelectric complex perovskites: structures, properties and phase transitions. Key Eng. Mater. 155, 81–122 (1998)

    Article  Google Scholar 

  10. A.A. Bokov, Z.-G. Ye, Recent progress in relaxor ferroelectrics and related materials with perovskite structure. J. Mater. Sci. 41, 31–52 (2006)

    Article  Google Scholar 

  11. L.E. Cross, Relaxor ferroelectrics. Ferroelectrics 76, 241 (1987)

    Article  Google Scholar 

  12. M. Kuwabara, K. Goda, K. Oshima, Coexistence of normal and diffuse ferroelectric-paraelectric phase transitions in (Pb,La)Ti03 ceramics. Phys. Rev. B 42, 10012 (1990)

    Article  Google Scholar 

  13. V.S. Tiwari, D. Pandey, Structure and properties of (Ba,Ca)TiO ceramics prepared using (Ba,Ca)CO3 precursors: II, diffuse phase transition behavior. J. Am. Ceram. Soc. 77, 1819–1824 (1994)

    Article  Google Scholar 

  14. R. Ranjan, N. Singh, D. Pandey, V. Siruguri, P.S.R. Krishna, S.K. Paranjpe, A. Banerjee, Room temperature crystal structure and relaxor ferroelectric behavior of Pb0.5Ca0.5TiO3. Appl. Phys. Lett. 70, 3221 (1997)

    Article  Google Scholar 

  15. R. Ganesh, E. Goo, Dielectric and ordering behavior in PbxCa1-xTiO3. J. Am. Ceram. Soc. 80, 653 (1997)

    Article  Google Scholar 

  16. S.M. Bobade, D.D. Gulwade, A.R. Kulkarni, P. Gopalan, Dielectric properties of A- and B-site-doped BaTiO3(I):la- and Al-doped solid solutions. J. Appl. Phys. 97, 074105 (2005)

    Article  Google Scholar 

  17. D.D. Gulwade, S.M. Bobade, A.R. Kulkarni, P. Gopalan, Dielectric properties of A- and B-site doped BaTiO3:la- and Ga-doped solid solutions. J. Appl. Phys. 97, 074106 (2005)

    Article  Google Scholar 

  18. Y. Tian, X. Chao, L. Wei, P. Liang, Z. Yang, Phase transition behavior and electrical properties of lead-free (Ba1-xCax)(Zr0.1Ti0.9)O3 piezoelectric ceramics. J. Appl. Phys. 113, 184107 (2013)

    Article  Google Scholar 

  19. D. Hennings, A. Schnell, G. Simon, Diffuse ferroelectric phase transitions in Ba(Ti1-yZry)O3 ceramics. J. Am. Ceram. Soc. 65, 539–544 (1982)

    Article  Google Scholar 

  20. S. Mitra, A.R. Kulkarni, O. Parakash, Diffuse phase transition and electrical properties of lead-free piezoelectric (Li x Na1-x )NbO3 (0.04 ≤ x ≤ 0.20) ceramics near morphotropic phase boundary. J. Appl. Phys. 114, 064106 (2013)

    Article  Google Scholar 

  21. R.P.S.M. Lobo, N.D.S. Mohallem, R.L. Moreira, Grain size effects on diffuse phase transition of Sol–gel prepared barium titanate ceramics. J. Am. Ceram. Soc. 78, 1343–1346 (1995)

    Article  Google Scholar 

  22. L. Zhigao, J.P. Bonnet, J. Ravez, J.M. Reau, P. Hagenmuller, An impedance study of Pb2KNb5O15 ferroelectric ceramics. J. Phys. Chem. Solids 53, 1 (1992)

    Article  Google Scholar 

  23. Y. Leyet, F. Guerrero, H. Amorín, J. de Los S. Guerra, J.A. Eiras, Anomaly in the conductivity relaxation parameters at the phase transition of ferroelectric materials: a time domain study. Appl. Phys. Lett. 97, 162914 (2010)

    Article  Google Scholar 

  24. C. Lei, A.A. Bokov, Z.G. Ye, Ferroelectric to relaxor crossover and dielectric phase diagram in the BaTiO3–BaSnO3 system. J. Appl. Phys. 101, 084105 (2007)

    Article  Google Scholar 

  25. M.S. Alkathy, K.K. Bokinala, K.C. James Raju, Effect of Li and Bi co-substituted on structural and physical properties of BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. (2015). doi:10.1007/s10854-015-4142-5

    Google Scholar 

  26. K.J. Park, C.H. Kim, Y.J. Yoon, S.M. Song, Y.T. Kim, K.H. Hur, Doping behaviors of dysprosium, yttrium and holmium in BaTiO3 ceramics. J. Eur. Ceram. Soc. 29, 1735 (2009)

    Article  Google Scholar 

  27. D. Makovec, Z. Samardzijia, M. Drofenik, Solid solubility of holmium, yttrium, and dysprosium in BaTiO3. J. Am. Ceram. Soc. 87, 1324 (2004)

    Article  Google Scholar 

  28. A. Dixit, S.B. Majumder, P.S. Dobal, R.S. Katiyar, A.S. Bhalla, Phase transition studies of sol–gel deposited barium zirconate titanate thin films. Thin Solid Films 227, 284 (2004)

    Article  Google Scholar 

  29. A. Scalabrin, A.S. Chaves, D.S. Shim, S.P.S. Porto, Temperature dependence of the a and E optical phonons in BaTiO3. Phys. Status Solidi B 79, 731 (1977)

    Article  Google Scholar 

  30. B.E. Vugmeister, M.D. Glinchuk, Dipole glass and ferroelectricity in random-site electric dipole systems. Rev. Mod. Phys. 62, 993 (1990)

    Article  Google Scholar 

  31. S.M. Bobade, D.D. Gulwade, A.R. Kulkarni, P. Gopalan, J. Appl. Phys. 97, 074105 (2005)

    Article  Google Scholar 

  32. S.M. Pilgrim, A.E. Sutherland, S.R. Winzer, Diffuseness as a useful parameter for relaxor ceramics. J. Am. Ceram. Soc. 73(10), 3122–3135 (1990)

    Article  Google Scholar 

  33. Thoret, J. Raves, Influence of degree of cation order on dielectric properties of some phases of type tetragonal tungsten bronze. Rev. Chim. Mineral. 24(3), 288–294 (1987)

    Google Scholar 

  34. R. Guo, A.S. Bhalla, G. Burns, F.H. Dacol, Studies of annealing and quenching of strontium barium niobate single crystals: A-site cation ordering-disordering effect. Ferroelectrics 93, 397–405 (1989)

    Article  Google Scholar 

  35. T. Kimura, S. Miyamoto, T. Yamaguchi, Microstructure development and dielectric properties of potassium strontium niobate ceramics. J. Am. Ceram. Soc. 73(1), 127–130 (1990)

    Article  Google Scholar 

  36. T. Kimura, S. Saiubol, K. Nagata, Effect of grain orientation on curie temperature of KSr2Nb5O15 solid solutions. J. Ceram. Soc. Japan, Int. Ed. 103(2), 132–137 (1995)

    Article  Google Scholar 

  37. C.A. Randall, R. Guo, A.S. Bhalla, L.E. Cross, Microstructure- property relations in tungsten bronze lead barium niobate. J. Mater. Res. 6(8), 1720–1728 (1991)

    Article  Google Scholar 

  38. E.C. Subbarao, X-ray study of phase transition in ferroelectric pbNb2O6 and related materials. J. Am. Ceram. Soc. 43(9), 439–442 (1960)

    Article  Google Scholar 

  39. M.H. Francombe, The relation between structure and ferroelectricity in lead barium and barium strontium niobate. Acta Crystallogr. 13, 131–140 (1960)

    Article  Google Scholar 

  40. W.R. Buessem, L.E. Cross, A.K. Goswami, Phenomenological theory of high permittivity in fine –grained barium titanate. J. Am. Ceram. Soc. 49(1), 33–36 (1966)

    Article  Google Scholar 

  41. T. Hiroshima, K. Tanaka, T. Kimura, Effect of microstructure and composition on curie temperature of lead barium niobate solid solution. J. A. Ceram. Soc 79(12), 3235–3242 (1996)

    Article  Google Scholar 

  42. W.Z. Zhu, A. Kholkin, P.Q. Mantas, J.L. Baptista, Dielectric response of PZN-based MPB composition doped with lanthanum. Mater. Chem. Phys. 73, 62 (2002)

    Article  Google Scholar 

  43. K. Uchino, S. Nomura, L.E. Cross, S.L. Jang, R.E. Newnham, Electrostrictive effect in lead magnesium niobate single crystals. J. Appl. Phys. 51, 1142 (1980)

    Article  Google Scholar 

  44. X.G. Tang, H.L.W. Chan, Effect of grain size on the electrical properties of ( Ba, Ca ) ( Zr, Ti ) O 3 relaxor ferroelectric ceramics. J. Appl. Phys. 97, 034109 (2005)

    Article  Google Scholar 

  45. G. Arlt, D. Hennings, G. With, Dielectric properties of fine grained barium titanate ceramics. J. Appl. Phys. 58, 1619 (1985)

    Article  Google Scholar 

  46. Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, P. Nanni, Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B 70, 024107 (2004)

    Article  Google Scholar 

  47. Y.P. Mao, S.Y. Mao, Z.G. Ye, Z.X. Xie, L.S. Zheng, Size-dependences of the dielectric and ferroelectric properties of BaTiO3/polyvinylidene fluoride nanocomposites. J. Appl. Phys. 108, 014102 (2010)

    Article  Google Scholar 

  48. F.D. Morrison, D.C. Sinclair, A.R. West, J. Appl. Phys. 86, 6355 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank UGC for providing experimental facilities at the University of Hyderabad and also we thanks to Dr. S. Srinath, School of Physics, University of Hyderabad in helping the dielectric and ferroelectric measurements. Mahmoud.S.Alkathy also acknowledge the financial support from Government of Yemen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K C JamesRaju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkathy, M.S., JamesRaju, K.C. Study of diffuse PhaseTransition behavior in Bi and Li Co-substituted barium titanate ceramics. J Electroceram 38, 63–73 (2017). https://doi.org/10.1007/s10832-016-0060-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-016-0060-z

Keywords

Navigation