Skip to main content
Log in

Effect of Nickel and Cobalt co-substitution on the structural and dielectric properties of Barium Titanate ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influence of Nickel and Cobalt co-substitution on the structure and dielectric properties of barium titanate (BaTiO3) ceramics has been investigated. Nickel and Cobalt co-substituted BaTiO3 ceramics with general formula BaTi1−x(Ni,Co)xO3 has been synthesized for x = 0.0, 0.02, 0.04 and 0.08 through conventional solid state reaction route. The structural analysis carried out by X-ray diffraction reveals the successful incorporation of Ni2+ and Co2+ ions in the Ti4+ site of BaTiO3 with all samples under study having tetragonal structure. However the tetragonality (c/a ratio) seems to be decreasing with increase of co-substitution. The dielectric measurements are done at different frequencies and temperatures. The room temperature dielectric constant decreased considerably for the Ni and Co co-substituted samples. The phase transition of the BaTi1−x(Ni,Co)xO3 has been investigated by studying the temperature dependence of dielectric constant. Nickel and Cobalt co-substituted samples showed diffused nature of phase transition with a notable reduction in the Curie temperature with the increase of co-substitution. The Curie temperature is reduced to 104 °C for x = 0.08 composition whereas for x = 0.0 the Curie temperature is 123 °C. Enhancement in conductivity is observed with addition of Nickel and Cobalt addition. Nearest-neighbour hopping model is used to explain the conduction in the samples under study and energy of activation for conduction is calculated from Arrhenius plot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Jona, G. Shirane, Ferroelectric Crystal (Dover Publication, New York, 1993)

    Google Scholar 

  2. P. Goel, K.L. Yadav, A.R. James, J. Phys. D 37, 3174 (2004)

    CAS  Google Scholar 

  3. F.D. Morrison, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 84, 474 (2001)

    CAS  Google Scholar 

  4. Y. Mizuno, H. Kishi, K. Ohnuma, T. Ishikawa, H. Ohsato, J. Eur. Ceram. Soc. 27, 4017 (2007)

    CAS  Google Scholar 

  5. V. Paunovic, V.V. Mitic, Z. Prijic, L. Zivkovic, Ceram. Int. 40, 4277 (2014)

    CAS  Google Scholar 

  6. D.D. Gulwade, S.M. Bobade, A.R. Kulkarni, P. Gopalan, J. Appl. Phys. 97, 074106 (2005)

    Google Scholar 

  7. Y. Zhen, J.F. Li, J. Am. Ceram. Soc. 89, 3669 (2006)

    CAS  Google Scholar 

  8. D. Xu, W. Li, L. Wang, W. Wang, W.D. Fei, RSC Adv. 4, 34008 (2014)

    CAS  Google Scholar 

  9. M.S. Alkathy, R. Gayam, K.C.J. Raju, Ceram. Int. 42, 15432 (2016)

    CAS  Google Scholar 

  10. P. Goel, K.L. Yadav, J. Mater. Sci. 42, 3928 (2007)

    CAS  Google Scholar 

  11. M.A. Mohiddon, K.L. Yadav, J. Sol-Gel Sci. Technol. 49, 88 (2009)

    CAS  Google Scholar 

  12. Q. Liu, J. Liu, D. Lu, W. Zheng, C. Hu, J. Alloys Compd. 760, 31 (2018)

    CAS  Google Scholar 

  13. S. Wu, S. Wang, L. Chen, X. Wang, J. Mater. Sci. Mater. Electron. 19, 505 (2008)

    CAS  Google Scholar 

  14. P. Sharma, P. Kumar, R.S. Kundu, J.K. Juneja, N. Ahlawat, R. Punia, Ceram. Int. 41, 13425 (2015)

    CAS  Google Scholar 

  15. S.K. Das, R.N. Mishra, B.K. Roul, Solid State Commun. 191, 19 (2014)

    CAS  Google Scholar 

  16. P. Kumar, V. Kumar, J. Alloys Compd. 731, 760 (2018)

    Google Scholar 

  17. N.V. Dang, T.L. Phan, T.D. Thanh, V.D. Lam, L.V. Hong, J. Appl. Phys. 111, 54 (2012)

    Google Scholar 

  18. A. Jana, T.K. Kundu, Mater. Lett. 61, 1544 (2007)

    CAS  Google Scholar 

  19. K. Madhan, R. Thiyagarajan, C. Jagadeeshwaran, A. Paul Blessington Selvadurai, V. Pazhanivelu, K. Aravinth, W. Yang, R. Murugaraj, J. Sol Gel Sci. Technol. 88, 584 (2018)

    CAS  Google Scholar 

  20. A. Rani, J. Kolte, S.S. Vadla, P. Gopalan, Ceram. Int. 42, 8010 (2016)

    CAS  Google Scholar 

  21. M.S. Alkathy, K.K. Bokinala, K.C.J. Raju, J. Mater. Sci. Mater. Electron. 27, 3175 (2016)

    CAS  Google Scholar 

  22. M.S. Alkathy, R. Gayam, K.C.J. Raju, J. Mater. Sci. Mater. Electron. 28, 1684 (2017)

    CAS  Google Scholar 

  23. H. Borkar, V. Rao, M. Tomar, V. Gupta, A. Kumar, J. Alloys Compd. 737, 821 (2018)

    CAS  Google Scholar 

  24. H.T. Langhammer, T. Müller, R. Böttcher, H.P. Abicht, Solid State Sci. 5, 965 (2003)

    CAS  Google Scholar 

  25. Y.C. Huang, S.S. Chen, W.H. Tuan, J. Am. Ceram. Soc. 90, 1438 (2007)

    CAS  Google Scholar 

  26. S.W. Yu, W.C.V. Yeh, J.L. Jou, C.M. Lei, Ferroelectrics 456, 31 (2013)

    CAS  Google Scholar 

  27. A. Rani, J. Kolte, and P. Gopalan, 2015 Jt. IEEE Int. Symp. Appl. Ferroelectr. Int. Symp. Integr. Funct. Piezoelectric Force Microsc. Work. ISAF/ISIF/PFM 2015 171 (2015).

  28. P. Hansen, D. Hennings, H. Schreinemacher, J. Electroceramics 2, 85 (1998)

    CAS  Google Scholar 

  29. H. Abrams, Metallography 4, 59 (1971)

    Google Scholar 

  30. X. Ning, P. Yong Ping, W. Zhuo, J. Am. Ceram. Soc. 95, 999 (2012)

    CAS  Google Scholar 

  31. G. Chen, J.H. Wei, X.D. Peng, C.L. Fu, W. Cai, Mater. Sci. Forum 787, 236 (2014)

    CAS  Google Scholar 

  32. S.M. Bobade, D.D. Gulwade, A.R. Kulkarni, P. Gopalan, J. Appl. Phys. 97, 72 (2005)

    Google Scholar 

  33. A. Sattar, S.A. Rahman, Phys. Status Solidi Appl. Res. 200, 415 (2003)

    CAS  Google Scholar 

  34. S.J. Lee, S.M. Park, Y.H. Han, Jpn. J. Appl. Phys. 48, 031403 (2009)

    Google Scholar 

  35. Y. Wang, Y. Wang, W. Rao, M. Wang, G. Li, Y. Li, J. Gao, W. Zhou, J. Yu, J. Mater. Sci. Mater. Electron. 23, 1064 (2012)

    CAS  Google Scholar 

  36. N. Adhlakha, K.L. Yadav, Smart Mater. Struct. 21, 1102 (2012)

    Google Scholar 

  37. Y. Park, W.J. Lee, H.G. Kim, J. Phys. Condens. Matter 9, 9445 (1997)

    CAS  Google Scholar 

  38. V.A. Isupov, Phys. Solid State 45, 1107 (2003)

    CAS  Google Scholar 

  39. M.A. Mohiddon, K.L. Yadav, J. Phys. D 41, 22 (2008)

    Google Scholar 

  40. M.A. Mohiddon, R. Kumar, P. Goel, K.L. Yadav, IEEE Trans. Dielectr. Electr. Insul. 14, 204 (2007)

    CAS  Google Scholar 

  41. N. Sareecha, W.A. Shah, M.L. Mirza, A. Maqsood, M.S. Awan, Phys. B 530, 283 (2018)

    CAS  Google Scholar 

  42. C. Ang, Z. Yu, L. Cross, Phys. Rev. B 62, 228 (2000)

    Google Scholar 

  43. T. Ohsawa, S. Hirose, N. Ohashi, Appl. Phys. Lett. 110, 10 (2017)

    Google Scholar 

  44. W. Heywang, J. Am. Ceram. Soc. 47, 484 (1964)

    CAS  Google Scholar 

  45. J. Wang, H. Zhang, Y. Li, Z. Li, J. Mater. Sci. Mater. Electron. 21, 811 (2010)

    CAS  Google Scholar 

  46. J. Yang, X.J. Meng, M.R. Shen, L. Fang, J.L. Wang, T. Lin, J.L. Sun, J.H. Chu, J. Appl. Phys. 104, 1 (2008)

    Google Scholar 

  47. N. Noginova, G.B. Loutts, E.S. Gillman, V.A. Atsarkin, A.A. Verevkin, Phys. Rev. B 63, 1744141 (2001)

    Google Scholar 

  48. S.H. Yoon, C.A. Randall, K.H. Hur, J. Appl. Phys. 107, 103721 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. James Raju.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhil Raman, T.S., Nair, V.R. & Raju, K.C.J. Effect of Nickel and Cobalt co-substitution on the structural and dielectric properties of Barium Titanate ceramics. J Mater Sci: Mater Electron 31, 21747–21757 (2020). https://doi.org/10.1007/s10854-020-04687-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04687-8

Navigation