Skip to main content
Log in

Preparation and electrical properties of sintered bodies composed of CrXMn1.5Co(1.0-X)Ni0.5O4 (0 ≦ X ≦ 0.42) with a cubic spinel structure

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Preparation and electrical properties of sintered bodies consisting of monophase cubic spinel oxides, CrXMn1.5Co(1.0-X)Ni0.5O4 (0 ≦ X ≦ 0.42), were investigated. Specimens with compositions within X = 0.42 were prepared as starting materials. The element of Cr was used to exchange Co3+ in octahedral sites (B sites) with Cr3+ so that the hopping mechanism can be discussed. The sintered bodies with mono cubic spinel structure were confirmed to be prepared by heat-treatment for 48 h in air at 1000 °C to convert them into a cubic spinel structure after sintering at 1400 °C. The semiconductive characteristics of the sintered bodies were determined as p-type because the Seebeck coefficients were all positive. The electrical conduction of the sintered bodies was concluded to be controlled by the small polaron hopping mechanism. In the region 0.1 ≦ X ≦ 0.42, the lattice constant increases and electrical conduction (σ) decreases linearly with increasing Cr concentration. The decrease in σ and the increase in the lattice constant corresponded to the increase in Cr concentration by which the jumping distance of electrons between Mn3+ and Mn4+ is lengthened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Meguro, T. Sasamoto, T. Yokoyama, S. Yamada, Y. Abe, N. Torikai, Yogyo-Kyokai-Shi 95, 336 (1987)

    Article  Google Scholar 

  2. T. Yokoyama, T. Meguro, T. Sasamoto, N. Hirai, Y. Abe, N. Torikai, J. Ceram. Soc. Jpn. 98, 601 (1990)

    Article  Google Scholar 

  3. T. Meguro, T. Sasamoto, T. Yokoyama, K. Shiraishi, Y. Abe, N. Torikai, J. Ceram. Soc. Jpn. 96, 338 (1988)

    Article  Google Scholar 

  4. T. Yokoyama, T. Meguro, T. Sasamoto, S. Yamada, Y. Abe, N. Torikai, J. Ceram. Soc. Jpn. 96, 985 (1988)

    Article  Google Scholar 

  5. T. Yokoyama, K. Kondo, K. Komeya, T. Meguro, Y. Abe, T. Sasamoto, J. Mater. Sci. 30, 1845 (1995)

    Article  Google Scholar 

  6. T. Yokoyama, Y. Abe, T. Meguro, K. Komeya, K. Kondo, S. Kaneko, T. Sasamoto, Jpn. J. Appl. Phys. 35, 5775 (1996)

    Article  Google Scholar 

  7. T. Yokoyama, T. Meguro, J. Mater. Sci. Soc. Jpn. 48, 237 (2011)

    Google Scholar 

  8. H. Moriwake, T. Hata, M. Katsumata, M. Takahashi, I. Shimono, J. Ceram. Soc. Jpn. 107, 258 (1999)

    Article  Google Scholar 

  9. G. Blasse, Philips Res. Repts. Suppl. 3, 1 (1964)

    Google Scholar 

  10. D.G. Wickham, W.J. Croft, J. Phys. Chem. Solids 7, 351 (1958)

    Article  Google Scholar 

  11. P.K. Baltzer, J.G. White, J. Appl. Phys. 29, 445 (1958)

    Article  Google Scholar 

  12. L.V. Azároff, Z. Kristallogr. 112, 33 (1959)

    Article  Google Scholar 

  13. M. O’Keeffe, J. Phys. Chem. Solids 21, 172 (1961)

    Article  Google Scholar 

  14. E.G. Larson, R.J. Arnott, D.G. Wickham, J. Phys. Chem. Solids 22, 1771 (1962)

    Article  Google Scholar 

  15. J.L. Gautier, J. Brenet, E. Trollund, Elecrochim. Acta 28, 1153 (1983)

    Article  Google Scholar 

  16. K. Sekai, S. Arai, T. Miura, T. Kishi, Denki Kagaku Kaishi 56, 643 (1988)

    Google Scholar 

  17. N. Cusack, P. Kendall, Proc. Phys. Soc. 72, 898 (1958)

    Article  Google Scholar 

  18. T. Yokoyama, T. Meguro, K. Kato, S. Okazaki, D. Ito, J. Tatami, T. Wakihara, K. Komeya, J. Electroceram. 31, 353 (2013)

    Article  Google Scholar 

  19. J.D. Dunitz, L.E. Orgel, J. Phys. Chem. Solids 3, 20 (1957)

    Article  Google Scholar 

  20. P.J. Wojtowicz, Phys. Rev. 116, 32 (1959)

    Article  Google Scholar 

  21. R.D. Shannon, Acta Cryst. A32, 751 (1976)

    Article  Google Scholar 

  22. M.J. Sinnott, in The solid state for engineers (John Wiley & Sons, Inc., New York, 1958), p. 369

  23. A. Amin, R.E. Newnham, in Electronic ceramic materials, ed. J. Nowotny (Trans Tech Publications Ltd., Switzerland, 1992), p. 339

  24. G.H. Jonker, S. Van Houten, in Halbleiterprobleme, ed by F.S. Köhn. (Frieder Vieweg & Sohn, Braunschweing, 1961), p. 118

    Chapter  Google Scholar 

  25. S.P. Mitoff, Progr. Ceram. Sci. 4, 217 (1966)

    Google Scholar 

  26. G.W. Rathenad, J.B. Goodenough, J. Appl. Phys. 39, 403 (1968)

    Article  Google Scholar 

  27. J.B. Goodenough, Progr. Solid State Chem. 5, 145 (1971)

    Article  Google Scholar 

  28. φ. Johannesen, P. Kofstad, J. Mater. Educ. 7, 915 (1985)

  29. P.A. Cox, The electronic structure and chemistry of solids (Oxford University Press, Oxford, 1987), p. 195

    Google Scholar 

  30. A.J. Moulson, J.M. Herbert, Electroceramics (John Wiley & Sons Ltd., England, 2003), p. 5

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yokoyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokoyama, T., Hirose, A., Meguro, T. et al. Preparation and electrical properties of sintered bodies composed of CrXMn1.5Co(1.0-X)Ni0.5O4 (0 ≦ X ≦ 0.42) with a cubic spinel structure. J Electroceram 37, 1–7 (2016). https://doi.org/10.1007/s10832-015-9999-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-015-9999-4

Keywords

Navigation