Skip to main content
Log in

Partially coherent electron transport in terahertz quantum cascade lasers based on a Markovian master equation for the density matrix

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We derive a Markovian master equation for the single-electron density matrix, applicable to quantum cascade lasers (QCLs). The equation conserves the positivity of the density matrix, includes off-diagonal elements (coherences) as well as in-plane dynamics, and accounts for electron scattering with phonons and impurities. We use the model to simulate a terahertz-frequency QCL, and compare the results with both experiment and simulation via nonequilibrium Green’s functions (NEGF). We obtain very good agreement with both experiment and NEGF when the QCL is biased for optimal lasing. For the considered device, we show that the magnitude of coherences can be a significant fraction of the diagonal matrix elements, which demonstrates their importance when describing THz QCLs. We show that the in-plane energy distribution can deviate far from a heated Maxwellian distribution, which suggests that the assumption of thermalized subbands in simplified density-matrix models is inadequate. We also show that the current density and subband occupations relax toward their steady-state values on very different time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Faist, J., et al.: Quantum cascade laser. Science 264, 553 (1994)

    Article  Google Scholar 

  2. Dupont, E., Fathololoumi, S., Liu, H.: Simplified density-matrix model applied to three-well terahertz quantum cascade lasers. Phys. Rev. B 81, 205311 (2010)

    Article  Google Scholar 

  3. Jirauschek, C., Kubis, T.: Modeling techniques for quantum cascade lasers. Appl. Phys. Rev. 1, 1, 011307 (2014)

    Article  Google Scholar 

  4. Iotti, R., Rossi, F.: Nature of charge transport in quantum-cascade lasers. Phys. Rev. Lett. 87, 146603 (2001)

    Article  Google Scholar 

  5. Callebaut, H., et al.: Importance of electron-impurity scattering for electron transport in terahertz quantum-cascade lasers. Appl. Phys. Lett. 84, 5, 645 (2004)

    Article  Google Scholar 

  6. Gao, X., Botez, D., Knezevic, I.: X-valley leakage in gaas-based midinfrared quantum cascade lasers: a monte carlo study. J. Appl. Phys. 101, 6, 063101 (2007)

    Google Scholar 

  7. Shi, Y.B., Knezevic, I.: Nonequilibrium phonon effects in midinfrared quantum cascade lasers. J. Appl. Phys. 116, 12, 123105 (2014)

    Google Scholar 

  8. Willenberg, H., Döhler, G.H., Faist, J.: Intersubband gain in a bloch oscillator and quantum cascade laser. Phys. Rev. B 67, 085315 (2003)

    Article  Google Scholar 

  9. Kumar, S., Hu, Q.: Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers. Phys. Rev. B 80, 245316 (2009)

  10. Weber, C., Wacker, A., Knorr, A.: Density-matrix theory of the optical dynamics and transport in quantum cascade structures: the role of coherence. Phys. Rev. B 79, 165322 (2009)

    Article  Google Scholar 

  11. Terazzi, R., Faist, J.: A density matrix model of transport and radiation in quantum cascade lasers. N. J. Phys. 12, 3, 033045 (2010)

    Article  Google Scholar 

  12. Lee, S.-C., Wacker, A.: Nonequilibrium green’s function theory for transport and gain properties of quantum cascade structures. Phys. Rev. B 66, 245314 (2002)

    Article  Google Scholar 

  13. Callebaut, H., Hu, Q.: Importance of coherence for electron transport in terahertz quantum cascade lasers. J. Appl. Phys. 98, 10, 104505 (2005)

    Article  Google Scholar 

  14. Dupont, E., et al.: A phonon scattering assisted injection and extraction based terahertz quantum cascade laser. J. Appl. Phys. 111, 7, 073111 (2012)

    Article  Google Scholar 

  15. Lindskog, M., et al.: Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium green’s functions. Appl. Phys. Lett. 105, 10, 103106 (2014)

    Article  Google Scholar 

  16. Harrison, P., Indjin, D.: Electron temperature and mechanisms of hot carrier generation in quantum cascade lasers. J. Appl. Phys. 92, 11, 6921 (2002)

    Google Scholar 

  17. Frohlich, H.: Theory of electrical breakdown in ionic crystals. Proc. R. Soc. Lond. A 160, 220 (1937)

    Article  Google Scholar 

  18. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  19. Knezevic, I., Novakovic, B.: Time-dependent transport in open systems based on quantum master equations. J. Comput. Electron. 12, 3, 363 (2013)

    Article  Google Scholar 

  20. Kohn, W., Luttinger, J.M.: Quantum theory of electrical transport phenomena. Phys. Rev. 108, 590 (1957)

  21. Fischetti, M.V.: Master-equation approach to the study of electronic transport in small semiconductor devices. Phys. Rev. B 59, 4901 (1999)

    Article  Google Scholar 

  22. Karimi, F., Davoody, A.H., Knezevic, I.: Dielectric function and plasmons in graphene: a self-consistent-field calculation within a Markovian master equation formalism. Phys. Rev. B 93, 205421 (2016)

    Article  Google Scholar 

  23. Mutze, U.: An asynchronous leapfrog method ii (2013) (Unpublished). arXiv:1311.6602

  24. Wacker, A.: Semiconductor superlattices: a model system for nonlinear transport. Phys. Rep. 357, 1, 1 (2002). (ISSN 0370-1573)

    Article  MATH  Google Scholar 

  25. Moiseyev, N.: Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling. Phys. Rep. 302, 5-6, 212 (1998). (ISSN 0370-1573)

    Article  Google Scholar 

  26. Ferry, D.K.: Semiconductors. IOP Publishing, Bristol (2013). (ISBN 978-0-750-31044-4)

    Book  Google Scholar 

  27. Jacoboni, C., Lugli, P.: The Monte Carlo Method for Semiconductor Device Simulation. Springer, Vienna (1989)

    Book  Google Scholar 

  28. Iotti, R., Ciancio, E., Rossi, F.: Quantum transport theory for semiconductor nanostructures: a density-matrix formulation. Phys. Rev. B 72, 125347 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support provided by the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Sciences and Engineering, Physical Behavior of Materials Program, Award No. DE-SC0008712. The work was performed using the resources of the UW-Madison Center for High Throughput Computing (CHTC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Jonasson.

Appendix: Calculation of \({\mathcal {G}}\) terms

Appendix: Calculation of \({\mathcal {G}}\) terms

This appendix is devoted to explicit calculation of \({\mathcal {G}}\). This task involves the evaluation of Eq. (21) for different scattering mechanisms, which is repeated here for convenience:

$$\begin{aligned} \mathcal G_g^\mathrm{em}(E_k,Q_z,E_q)\equiv \frac{1}{2\pi } \int _{0}^{2\pi }\mathrm{d}\theta \mathcal W_g^\mathrm{em}(\mathbf Q,E_k). \end{aligned}$$
(44)

The matrix element \(\mathcal W_g^\mathrm{em}(\mathbf Q,E_k)\) can always be written in terms of \(E_q=\hbar ^2q^2/2m^*, E_k=\hbar ^2k^2/2m^*, E_z=\hbar ^2Q_z^2/2m^*, \) and the angle \(\theta \) between \(\mathbf k\) and \(\mathbf q\). Note that this definition of \(E_z\) is only to make expressions more compact and readable, and the actual energy in the z-direction is contained in the \(\varDelta _{nm}\) terms. Derivations of the various phonon matrix elements \(\mathcal W_g^\mathrm{em}(\mathbf Q)\) used in this section can be found in Refs. [26, 27].

For the case of longitudinal acoustic (LA) phonons, we employ the equipartition approximation and get

$$\begin{aligned} \mathcal W_\mathrm{LA}^\mathrm{em}(\mathbf Q)\simeq \frac{D_\mathrm{ac}^2k_BT_L}{2m^*v_s^2}=\beta _{LA}, \end{aligned}$$
(45)

where \(D_\mathrm{ac}\) is the deformation potential for acoustic phonons, and \(v_s\) is the sound velocity in the material. In this case, the \(\theta \) integration in Eq. (44) gives \(\mathcal G_\mathrm{LA}^\mathrm{em}=\beta _\mathrm{LA}\). Since acoustic phonons are treated elastically, the emission and absorption terms are identical.

As with the acoustic phonons, the nonpolar optical phonon scattering is isotropic, so the phonon matrix element is constant \(\mathcal W_\mathrm{op}^\mathrm{em}(\mathbf Q)=(N_\mathrm{op}+1)\beta _\mathrm{op}\). The angular integration in Eq. (44) gives \(\mathcal G_\mathrm{op}^\mathrm{em}=(N_\mathrm{op}+1)\beta _\mathrm{op}\).

The phonon matrix element for electron scattering with polar optical phonons, with screening included, is given by

$$\begin{aligned} \mathcal W_\mathrm{pop}^\mathrm{em}(\mathbf Q)=(N_\mathrm{pop}+1)\beta _\mathrm{pop} \frac{Q^2}{(Q^2+Q_\mathrm{D}^2)^2} \ , \end{aligned}$$
(46a)

where \(Q_\mathrm{D}\) is the Debye wave vector defined by \(Q_\mathrm{D}^2=ne^2/(\varepsilon k_B T)\) and

$$\begin{aligned} \beta _\mathrm{pop}=\frac{e^2E_\mathrm{pop}}{2\varepsilon _0} \left( \frac{1}{\varepsilon _r^\infty } - \frac{1}{\varepsilon _r} \right) \ , \end{aligned}$$
(46b)

where \(\varepsilon _r^\infty \) and \(\varepsilon _r\) are the high-frequency and low-frequency relative permittivities of the material, respectively, and n is the average electron density. The effects of screening are quite small at the electron densities considered in this work; however, the \(1/Q^2\) singularity poses problems in numerical calculations due to the high strength of the POP interaction. These problems are avoided by including screening. We can now calculate

$$\begin{aligned}&\frac{\mathcal G_\mathrm{pop}^\mathrm{em}(E_k,E_z,E_q)}{(N_\mathrm{pop}+1)}\nonumber \\&\quad =\frac{\beta _\mathrm{pop}}{2\pi } \int _0^{2\pi } \mathrm{d}\theta \frac{ |\mathbf Q-\mathbf k|^2 }{( |\mathbf Q-\mathbf k|^2+Q_\mathrm{D}^2 )^2} \nonumber \\&\quad =\frac{\beta _\mathrm{pop}}{2\pi }\int _0^{2\pi } \mathrm{d}\theta \frac{Q_z^2+q^2+k^2-2qk\cos (\theta )}{( q_z^2+q^2+k^2-2kq\cos (\theta ) +Q_\mathrm{D}^2 )^2} \nonumber \\&\quad = \frac{\beta _\mathrm{pop}}{Q_z^2+q^2+k^2} \left[ 1+\frac{Q_\mathrm{D}^2}{Q_z^2+q^2+k^2} - \frac{4k^2q^2}{(Q_z^2+q^2+k^2)^2 } \right] \nonumber \\&\qquad \times \left[ \left( 1+\frac{Q_\mathrm{D}^2}{Q_z^2+q^2+k^2}\right) ^2 -\frac{4k^2q^2}{(Q_z^2+q^2+k^2)^2} \right] ^{-\frac{3}{2}} \nonumber \\&\quad = \frac{\hbar ^2}{2m^*}\frac{\beta _\mathrm{pop}}{E_z+E_k+E_q} \nonumber \\&\qquad \times \left[ 1+\frac{E_\mathrm{D}}{E_z+E_q+E_k} - \frac{4E_kE_q}{(E_z+E_q+E_k)^2 } \right] \nonumber \\&\qquad \times \left[ \left( 1+\frac{E_\mathrm{D}}{E_z+E_q+E_k}\right) ^2 -\frac{4E_kE_q}{(E_z+E_q+E_k)^2} \right] ^{-\frac{3}{2}}, \end{aligned}$$
(47)

where \(E_\mathrm{D}=\hbar ^2Q_\mathrm{D}^2/2m^*\) is the Debye energy.

The matrix element for ionized impurities is given by

$$\begin{aligned} \mathcal W_\mathrm{ii}^\mathrm{em}(\mathbf Q)=\frac{\beta _{ii}}{|\mathbf Q|^4} \end{aligned}$$
(48a)

with

$$\begin{aligned} \beta _{ii}=\frac{N_IZ^2e^4}{2\varepsilon _r^2\varepsilon _0^2}\ , \end{aligned}$$
(48b)

where \(N_I\) is the impurity density, and Z is the number of unit charges per impurity. This matrix element gives

$$\begin{aligned}&\mathcal G_\mathrm{ii}^\mathrm{em}(E_k,E_z,E_q)\nonumber \\&\quad =\frac{\beta _{ii}}{2\pi } \int _0^{2\pi } d \theta \frac{1}{(Q_z^2+q^2+k^2-2qk\cos (\theta ))^2}\nonumber \\&\quad = \beta _{ii} \frac{Q_z^2+q^2+k^2}{[ (Q_z^2+q^2+k^2)^2-4q^2k^2 ]^{3/2}} \nonumber \\&\quad =\beta _{ii}\frac{\hbar ^4}{4m^2}\frac{E_z+E_k+E_q}{[(E_z+E_k+E_q)^2-4E_kE_q]^{3/2}} . \end{aligned}$$
(49)

Since ionized-impurity scattering is elastic, the absorption term is identical to the emission term.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jonasson, O., Karimi, F. & Knezevic, I. Partially coherent electron transport in terahertz quantum cascade lasers based on a Markovian master equation for the density matrix. J Comput Electron 15, 1192–1205 (2016). https://doi.org/10.1007/s10825-016-0869-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0869-3

Keywords

Navigation