Skip to main content
Log in

Modeling and simulation of graphene-oxide-based RRAM

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We propose a conduction model for resistive random-access memory (RRAM) based on graphene oxide (GO). We associate the electron transport mechanism with a multiphonon trap-assisted tunneling (MTAT) model. Pristine GO is electrically insulating due to the presence of \(sp^{3}\)-hybridized oxygen functional groups, e.g., hydroxyl, epoxide, carbonyl, and carboxyl groups. Electrically driven reduction of these oxygen groups triggers formation of nanoscale \(sp^{2}\) islands across the oxide layers. These graphene-like islands act as intermediate trap sites and assist electrons to tunnel from the cathode toward the anode despite being isolated by the disordered \(sp^{3}\)-bonded matrix. The presence of vertically aligned trap sites leads to the formation of percolation paths that allow a steady flow of electrons. The resistance state of the RRAM device can then be reversibly switched by electrically modulating the concentration of \(sp^{2}\) islands. This model shows good agreement with experimental data; therefore, we regard MTAT as an admissible explanation for the conduction mechanism in GO-based RRAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang, L., Yang, C.-H., Wen, J.: Physical principles and current status of emerging non-volatile solid state memories. Electron. Mater. Lett. 11, 505–543 (2015)

    Article  Google Scholar 

  2. Meena, J.S., Sze, S.M., Chand, U., Tseng, T.-Y.: Overview of emerging nonvolatile memory technologies. Nanoscale Res. Lett. 9, 526 (2014)

    Article  Google Scholar 

  3. Choi, B.J., Torrezan, A.C., Norris, K.J., Miao, F., Strachan, J.P., Zhang, M.-X., Ohlberg, D.A.A., Kobayashi, N.P., Yang, J.J., Williams, R.S.: Electrical Performance and Scalability of Pt Dispersed SiO2 Nanometallic Resistance Switch. Nano Lett. 13, 3213–3217 (2013)

    Article  Google Scholar 

  4. Lee, M.-J., Lee, C.B., Lee, D., Lee, S.R., Chang, M., Hur, J.H., Kim, Y.-B., Kim, C.-J., Seo, D.H., Seo, S., Chung, U.-I., Yoo, I.-K., Kim, K.: A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat Mater 10, 625–630 (2011)

    Article  Google Scholar 

  5. Wei, Z., Kanzawa, Y., Arita, K., Katoh, Y., Kawai, K., Muraoka, S., Mitani, S., Fujii, S., Katayama, K., Iijima, M., Mikawa, T., Ninomiya, T., Miyanaga, R., Kawashima, Y., Tsuji, K., Himeno, a., Okada, T., Azuma, R., Shimakawa, K., Sugaya, H., Takagi, T., Yasuhara, R., Horiba, K., Kumigashira, H., Oshima, M. Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism. 2008 IEEE Int. Electron Devices Meet. (2008)

  6. Chien, W.C., Chen, Y.C., Lee, F.M., Lin, Y.Y., Lai, E.K., Yao, Y.D., Gong, J., Horng, S.F., Yeh, C.W., Tsai, S.C., Lee, C.H., Huang, Y.K., Chen, C.F., Kao, H.F., Shih, Y.H., Hsieh, K.Y., Lu, C.Y.: A novel Ni/WOX/W resistive random access memory with excellent retention and low switching current. Jpn. J. Appl. Phys. 50, 04DD11–1–04DD11–5 (2011)

    Article  Google Scholar 

  7. Wang, X.P., Fang, Z., Li, X., Chen, B., Gao, B., Kang, J.F., Chen, Z.X., Kamath, a, Shen, N.S., Singh, N., Lo, G.Q., Kwong, D.L.: Highly compact 1T-1R architecture (4F2 footprint) involving fully CMOS compatible vertical GAA nano-pillar transistors and oxide-based RRAM cells exhibiting excellent NVM properties and ultra-low power operation. Tech. Dig. - Int. Electron Devices Meet. IEDM 6, 493–496 (2012)

    Google Scholar 

  8. Meng, Y., Xue, X.Y., Song, Y.L., Yang, J.G., Chen, Ba, Lin, Y.Y., Zou, Q.T., Huang, R., Wu, J.G.: Fast Step-Down Set Algorithm of Resistive Switching Memory with Low Programming Energy and Significant Reliability Improvement. 122109, 42–43 (2014)

  9. Lee, S., Sohn, J., Chen, H., Wong, H.P.: Metal Oxide Resistive Memory using Graphene Edge Electrode. arXiv Prepr. arXiv:1502.02675 (2015)

  10. Chua, L.: Resistance switching memories are memristors. Appl. Phys. A Mater. Sci. Process. 102, 765–783 (2011)

    Article  MATH  Google Scholar 

  11. Huang, R., Cai, Y., Liu, Y., Bai, W., Kuang, Y., Wang, Y.: Resistive Switching in Organic Memory Devices for Flexible Applications. pp. 838–841 (2014)

  12. Sharma, Y., Misra, P., Katiyar, R.S.: Unipolar resistive switching behavior of amorphous YCrO3 films for nonvolatile memory applications. J. Appl. Phys. 116, 084505 (2014)

    Article  Google Scholar 

  13. Gale, E.: TiO2-based memristors and ReRAM: materials, mechanisms and models (a review). Semicond. Sci. Technol. 29, 104004 (2014)

    Article  Google Scholar 

  14. Zhao, X., Xu, H., Wang, Z., Zhang, L., Ma, J., Liu, Y.: Nonvolatile/volatile behaviors and quantized conductance observed in resistive switching memory based on amorphous carbon. Carbon N. Y. 91, 38–44 (2015)

    Article  Google Scholar 

  15. Lim, E.W., Ismail, R.: Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey. Electronics 4, 586–613 (2015)

    Article  Google Scholar 

  16. Wang, L.H., Yang, W., Sun, Q.Q., Zhou, P., Lu, H.L., Ding, S.J., Wei Zhang, D.: The mechanism of the asymmetric SET and RESET speed of graphene oxide based flexible resistive switching memories. Appl. Phys. Lett. 100, 3–7 (2012)

    Google Scholar 

  17. Hermann, M., Schenk, A.: Field and high-temperature dependence of the long term charge loss in erasable programmable read only memories: Measurements and modeling. J. Appl. Phys. 77, 4522–4540 (1995)

    Article  Google Scholar 

  18. Hummers Jr., W.S., Offeman, R.E.: Preparation of Graphitic Oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958)

    Article  Google Scholar 

  19. Szabó, T., Berkesi, O., Forgó, P., Josepovits, K., Sanakis, Y., Petridis, D., Dékány, I.: Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18, 2740–2749 (2006)

    Article  Google Scholar 

  20. Jung, I., Dikin, Da, Piner, R.D., Ruoff, R.S.: Tunable electrical conductivity of individual graphene oxide sheets reduced at Low temperatures. Nano Lett. 8, 4283–4287 (2008)

    Article  Google Scholar 

  21. Zhuge, F., Hu, B., He, C., Zhou, X., Liu, Z., Li, R.W.: Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon N. Y. 49, 3796–3802 (2011)

    Article  Google Scholar 

  22. Hong, S.K., Kim, E.J., Kim, S.O., Cho, B.J.: Analysis on switching mechanism of graphene oxide resistive memory device. J. Appl. Phys. 110, 1–5 (2011)

    Article  Google Scholar 

  23. Wu, H.-Y., Lin, C.-C., Lin, C.-H.: Characteristics of graphene-oxide-based flexible and transparent resistive switching memory. Ceram. Int. 41, S823–S828 (2015)

    Article  Google Scholar 

  24. Kaiser, A.B., Cristina, G.N., Sundaram, R.S., Burghard, M., Kern, K.: Electrical conduction mechanism in chemically derived graphene monolayers. Nano Lett. 9, 1787–1792 (2009)

    Article  Google Scholar 

  25. Eda, G., Mattevi, C., Yamaguchi, H., Kim, H., Chhowalla, M.: Insulator to semimetal transition in graphene oxide. J. Phys. Chem. C 113, 15768–15771 (2009)

    Article  Google Scholar 

  26. Ekiz, O.O., Ürel, M., Güner, H., Mizrak, A.K., Dâna, A.: Reversible electrical reduction and oxidation of graphene oxide. ACS Nano 5, 2475–2482 (2011)

    Article  Google Scholar 

  27. Yi, M., Cao, Y., Ling, H., Du, Z., Wang, L., Yang, T., Fan, Q., Xie, L., Huang, W.: Temperature dependence of resistive switching behaviors in resistive random access memory based on graphene oxide film. Nanotechnology 25, 185202 (2014)

    Article  Google Scholar 

  28. Porro, S., Accornero, E., Pirri, C.F., Ricciardi, C.: Memristive devices based on graphene oxide. Carbon N. Y. 85, 383–396 (2015)

    Article  Google Scholar 

  29. He, C.L., Zhuge, F., Zhou, X.F., Li, M., Zhou, G.C., Liu, Y.W., Wang, J.Z., Chen, B., Su, W.J., Liu, Z.P., Wu, Y.H., Cui, P., Li, R.W.: Nonvolatile resistive switching in graphene oxide thin films. Appl. Phys. Lett. 95, 2013–2016 (2009)

    Google Scholar 

  30. Jeong, H.Y., Kim, J.Y., Kim, J.W., Hwang, J.O., Kim, J.E., Lee, J.Y., Yoon, T.H., Cho, B.J., Kim, S.O., Ruoff, R.S., Choi, S.Y.: Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett. 10, 4381–4386 (2010)

    Article  Google Scholar 

  31. Nho, H.W., Kim, J.Y., Wang, J., Shin, H.J., Choi, S.Y., Yoon, T.H.: Scanning transmission X-ray microscopy probe for in situ mechanism study of graphene-oxide-based resistive random access memory. J. Synchrotron Radiat. 21, 170–176 (2014)

    Article  Google Scholar 

  32. Khurana, G., Misra, P., Katiyar, R.S.: Forming free resistive switching in graphene oxide thin film for thermally stable nonvolatile memory applications. J. Appl. Phys. 114 (2013)

  33. Wei, H.Q., Zhou, P., Sun, Q.Q., Wang, L.H., Geng, Y., Zhang, D.W., Wang, X.B.: The nano-scale resistive memory effect of graphene oxide. IEEE Nanotechnol. Mater. Devices Conf. 54–57 (2012)

  34. Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K.A., Celik, O., Mastrogiovanni, D., Cranozzi, C., Carfunkel, E., Chhowalla, M.: Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived craphene thin films. Adv. Funct. Mater. 19, 2577–2583 (2009)

    Article  Google Scholar 

  35. Vandelli, L., Padovani, A., Larcher, L., Southwick, R.G., Knowlton, W.B., Bersuker, G.: A physical model of the temperature dependence of the current through SiO2/HfO2 stacks. IEEE Trans. Electron Devices 58, 2878–2887 (2011)

    Article  Google Scholar 

  36. Vandelli, L., Padovani, A., Larcher, L., Broglia, G., Ori, G., Montorsi, M., Bersuker, G., Pavan, P.: Comprehensive physical modeling of forming and switching operations in HfO 2 RRAM devices. Tech. Dig. - Int. Electron Devices Meet. IEDM, 421–424 (2011)

  37. Schuler, F., Degraeve, R., Hendrickx, P., Wellekens, D.: Physical description of anomalous charge loss in floating gate based NVM’s and identification of its dominant parameter. 2002 IEEE Int. Reliab. Phys. Symp. Proceedings. 40th Annu. (Cat. No.02CH37320. 26–33 (2002)

  38. Cheng, X.R., Cheng, Y.C., Liu, B.Y.: Nitridation-enhanced conductivity behavior and current transport mechanism in thin thermally nitrided SiO2. J. Appl. Phys. 63, 797–802 (1988)

    Article  Google Scholar 

  39. Nasyrov, Ka, Shaimeev, S.S., Gritsenko, Va: Trap-assisted tunneling hole injection in SiO2: Experiment and theory. J. Exp. Theor. Phys. 109, 786–793 (2009)

    Article  Google Scholar 

  40. Bocquet, M., Deleruyelle, D., Muller, C., Portal, J.M.: Self-consistent physical modeling of set/reset operations in unipolar resistive-switching memories. Appl. Phys. Lett. 98, 6–8 (2011)

    Article  Google Scholar 

  41. Bocquet, M., Deleruyelle, D., Aziza, H., Muller, C., Portal, J.M., Cabout, T., Jalaguier, E.: Robust compact model for bipolar oxide-based resistive switching memories. IEEE Trans. Electron Devices 61, 674–681 (2014)

    Article  Google Scholar 

  42. Grierson, D.S., Sumant, A.V., Konicek, A.R., Friedmann, T.A., Sullivan, J.P., Carpick, R.W.: Thermal stability and rehybridization of carbon bonding in tetrahedral amorphous carbon. J. Appl. Phys. 107, 033523 (2010)

    Article  Google Scholar 

  43. Guan, X., Yu, S., Wong, H.S.P.: On the switching parameter variation of metal-oxide RRAM - Part I: Physical modeling and simulation methodology. IEEE Trans. Electron Devices 59, 1172–1182 (2012)

    Article  Google Scholar 

  44. Tiras, E., Ardali, S., Tiras, T., Arslan, E., Cakmakyapan, S., Kazar, O., Hassan, J., Janzén, E., Ozbay, E.: Effective mass of electron in monolayer graphene: Electron-phonon interaction. J. Appl. Phys 113 (2013)

  45. Jin, M., Jeong, H.-K., Yu, W.J., Bae, D.J., Kang, B.R., Lee, Y.H.: Graphene oxide thin film field effect transistors without reduction. J. Phys. D. Appl. Phys. 42, 135109 (2009)

    Article  Google Scholar 

  46. Moldovan, D., Jiménez, O.: Explicit drain-current model of graphene field-effect transistors targeting analog and radio-frequency applications (2011)

  47. Kim, J.H., Hwang, J.H., Suh, J., Tongay, S., Kwon, S., Hwang, C.C., Wu, J., Young Park, J.: Work function engineering of single layer graphene by irradiation-induced defects. Appl. Phys. Lett., 103 (2013)

  48. Zhang, Y., Tan, Y.-W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)

    Article  Google Scholar 

  49. Venugopal, G., Krishnamoorthy, K., Mohan, R., Kim, S.-J.: An investigation of the electrical transport properties of graphene-oxide thin films. Mater. Chem. Phys. 132, 29–33 (2012)

    Article  Google Scholar 

  50. Rezania, B., Severin, N., Talyzin, A.V., Rabe, J.P.: Hydration of bilayered graphene oxide. Nano Lett. 14, 3993–3998 (2014)

  51. Krishnamoorthy, K., Veerapandian, M., Yun, K., Kim, S.-J.: The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon N. Y. 53, 38–49 (2013)

    Article  Google Scholar 

  52. Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)

    Article  Google Scholar 

  53. Buchsteiner, A., Lerf, A., Pieper, J.: Water dynamics in graphite oxide investigated with neutron scattering. J. Phys. Chem. B 110, 22328–22338 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Research Management Centre (RMC) of Universiti Teknologi Malaysia (UTM) for providing an excellent research environment in which to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razali Ismail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, E.W., Ahmadi, M.T. & Ismail, R. Modeling and simulation of graphene-oxide-based RRAM. J Comput Electron 15, 602–610 (2016). https://doi.org/10.1007/s10825-016-0813-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0813-6

Keywords

Navigation