Skip to main content
Log in

Continuum model of the potential of charge carriers in a bent piezoelectric ZnO nanowire: analytic and numerical study

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The piezoelectric potential of a slightly n-doped ZnO nanowire is analytically and numerically solved. We approximated the dopant concentration \((N_d^{+})\) to shift slightly from the intrinsic level toward an n-typed region by increasing the donor concentration. Correspondingly, the electron density is also approximated. The analytic solution of the continuum model indicates that the derived solution is dependent on the lateral force, Bessel function, and Meijer G-function. As per the potential of the nanowire’s cross section, the potential in the tensile side is considered to have screening effects, and the polarity of the potential between the tensile and the compressive is antisymmetric such that the compressive is negative and the tensile is positive. The diameter in the ZnO nanowire used in the model is 200 nm, and the lateral force used is approximately \(80 \times 10^{-5}\) N. Although the resulting piezoelectric potential of the NW that is derived from the simplified coefficient form is not accurately estimated, it shows a trend with the scaled values. The difference in the potential between the maximum tensile and compressive value is approximately one order that is consistent with others (Wang and Song, Science 312:242–246, 2006;Gao and Wang, Nano Lett 9:1103–1110, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lee, S.S., White, R.M.: Piezoelectric cantilever acoustic transducer. J. Micromech. Microeng. 8, 230–238 (1998)

    Article  Google Scholar 

  2. Du, X.Y., Fu, Y.Q., Luo, J.K., Flewitt, A.J., Milne, W.I.: Microfluidic pumps employing surface acoustic waves generated in ZnO thin films. J. Appl. Phys. 105, 1–7 (2009)

  3. Miko, E., Remco, W.: Mechanical Microsensors. Microtechnology and MEMS. Springer, Heidelberg (2001)

    Google Scholar 

  4. Wang, Z.L., Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science. 312, 242–246 (2006)

    Article  Google Scholar 

  5. Gao, P.X., Song, J., Liu, J., Wang, Z.L.: Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Adv. Mater. 19, 67–72 (2007)

    Article  Google Scholar 

  6. Gao, Y., Wang, Z.L.: Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 7, 2499–2505 (2007)

    Article  Google Scholar 

  7. Liu, J., Fei, P., Song, J., Wang, X., Lao, C., Tummala, R., Wang, Z.L.: Carrier density and Schottky barrier on the performance of DC nanogenerator. Nano Lett. 8, 328–332 (2007)

    Article  Google Scholar 

  8. Wang, X., Song, J., Liu, J., Wang, Z.L.: Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007)

    Article  Google Scholar 

  9. Gao, Y., Wang, Z.L.: Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 9, 1103–1110 (2009)

    Article  Google Scholar 

  10. Gorelkinskii, Y., Watkins, G.: Defects produced in ZnO by 2.5-MeV electron irradiation at 4.2 K: study by optical detection of electron paramagnetic resonance. Phys. Rev. B 69, 115212 (2004)

    Article  Google Scholar 

  11. Look, D.C., Farlow, G.C., Reunchan, P., Limpijumnong, S., Zhang, S.B., Nordlund, K.: vidence for native-defect donors in \(n\)-type ZnO. Phys. Rev. Lett. 95, 225502 (2005)

    Article  Google Scholar 

  12. Van de Walle, C.G.: Hydrogen as a cause of doping in zinc oxide. Phys. Rev. Lett. 85, 1012–1015 (2000)

    Article  Google Scholar 

  13. Cox, S.F.J., Davis, E.A., Cottrell, S.P., King, P.J.C., Lord, J.S., Gil, J.M., Alberto, H.V., Vilao, R.C., Duarte, J.P., De Campos, N.A., Weidinger, A., Lichti, R.L., Irvine, S.J.C.: Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide. Phys. Rev. Lett. 86, 2601–2604 (2001)

    Article  Google Scholar 

  14. Hofmann, D.M., Hofstaetter, A., Leiter, F., Zhou, H., Henecker, F., Meyer, B.K., Orlinskii, S.B., Schmidt, J., Baranov, P.G.: Hydrogen: a relevant shallow donor in zinc oxide. Phys. Rev. Lett. 88, 045504 (2002)

    Article  Google Scholar 

  15. Shimomura, K., Nishiyama, K., Kadono, R.: Electronic structure of the muonium center as a shallow donor in ZnO. Phys. Rev. Lett. 89, 255505 (2002)

    Article  Google Scholar 

  16. Shi, G.A., Stavola, M., Pearton, S.J., Thieme, M., Lavrov, E.V., Weber, J.: Hydrogen local modes and shallow donors in ZnO. Phys. Rev. B 72, 195211 (2005)

    Article  Google Scholar 

  17. Shao, Z.Z., Wen, L.Y., Wu, D.M., Wang, X.F., Zhang, X.A., Chang, S.L.: A continuum model of piezoelectric potential generated in a bent ZnO nanorod. J. Phys. D 43, 245403 (2010)

    Article  Google Scholar 

  18. Gao, Y., Wang, Z.L.: Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett 7, 2499–2505 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Min Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.M., Ha, J. & Kim, Jb. Continuum model of the potential of charge carriers in a bent piezoelectric ZnO nanowire: analytic and numerical study. J Comput Electron 15, 545–549 (2016). https://doi.org/10.1007/s10825-016-0810-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0810-9

Keywords

Navigation