Skip to main content
Log in

Non-local transport in numerical simulation of GaN LED

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We propose a device modeling theory based on an improved drift–diffusion solution that is suitable for simulation of the efficiency droop effect in GaN LED. Our theory modifies the drift–diffusion transport by adding a non-local carrier transport component that mimics the effect of hot carriers near the multiple quantum well region. The non-local transport model is supported by recent experimental evidence of Auger-induced hot carriers as well as explaining the experimental low turn-on voltage that conventional drift–diffusion theory fails to predict. A surprising finding from the simulation is that the hot-Auger carriers have a positive effect of reducing the junction resistance of the LED and thus help improve the overall wall-plug efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Iveland, J., Martinelli, L., Peretti, J., Speck, J.S., Weisbuch, C.: Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. Phys. Rev. Lett. 110, 177406 (2013)

    Article  Google Scholar 

  2. Sadi, T., Kivisaari, P., Oksanen, J., Tulkki, J.: On the correlation of the Auger generated hot electron emission and efficiency droop in III-N LEDs. Appl. Phys. Lett. 105, 091106-1–091106-5 (2014)

    Article  Google Scholar 

  3. Bertazzi, F., Goano, M., Zhou, X., Calciati, M., Ghione, G., Matsubara, M., Bellotti, E.: Looking for Auger signatures in III-nitride light emitters: a full-band Monte Carlo perspective. Appl. Phys. Lett 106, 061112 (2015)

    Article  Google Scholar 

  4. Deppner, M., Romer, F., Witzigmann, B.: Auger carrier leakage in III-nitride quantum-well light emitting diodes. Phys. Status Solidi RRL 13, 418 (2012)

  5. Romer, F., Witzigmann, B.: Effect of Auger recombination and leakage on the droop in InGaN/GaN quantum well LEDs. Opt. Express 22(56), A1440 (2014)

    Article  Google Scholar 

  6. Smith, A.W., Brennan, K.F.: Hydrodynamic simulation of semiconductor devices. Prog. Quantum Electron. 21, 293 (1998)

    Article  Google Scholar 

  7. Azoff, E.M.: Energy transport numerical simulation of graded AlGaAs/GaAs heterojunction bipolar transistors. IEEE Trans. 36, 609–616 (1989)

    Article  Google Scholar 

  8. APSYS Simulation Package, Crosslight Software Inc., www.crosslight.com

  9. Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. Wiley, Hoboken (1981)

    Google Scholar 

  10. Fiorentini, V., Bernardini, F., Ambacher, O.: Evidence for nonlinear macroscopic polarization in IIIV nitride alloy heterostructures. Appl. Phys. Lett 80, 1204 (2002)

    Article  Google Scholar 

  11. Perlman, S.S., Feucht, D.L.: p-n heterojunctions. Solid State Electron. 7, 911 (1964)

  12. Scharfetter, D.L., Gummel, H.K.:Large-signal analysis of a silicon Read diode oscillator. IEEE Trans. Electron. Devices. 16, 64–77 (1969)

  13. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Sounders College, Philadelphia (1976)

    Google Scholar 

  14. Lin, Y.Y., Chuang, R.W., Chang, S.J., Li, S., Jiao, Z.Y., Ko, T.K., Hon, S.J., Liu, C.H.: GaN-based LEDs with a chirped multiquantum barrier structure. IEEE Photonics Technol. Lett. 24(18), 1600 (2012)

    Article  Google Scholar 

  15. Piprek, J., Simon Li, Z.M.: Origin of InGaN light-emitting diode efficiency improvements using chirped AlGaN multi-quantum barriers. Appl. Phys. Lett. 102, 023510 (2013)

    Article  Google Scholar 

  16. Xia, C.S., Simon Li, Z.M., Sheng, Y.: On the importance of AlGaN electron blocking layer design for GaN-based light-emitting diodes. Appl. Phys. Lett. 103, 233505 (2013)

    Article  Google Scholar 

  17. Binder, M., Nirschl, A., Zeisel, R., Hager, T., Lugauer, H.-J., Sabathil, M., Bougeard, D., Wagner, J., Galler, B.: Identification of nnp and npp Auger recombination as significant contributor to the efficiency droop in (GaIn)N quantum wells by visualization of hot carriers in photoluminescence. Appl. Phys. Lett. 103, 071108 (2013)

    Article  Google Scholar 

  18. Bertazzi, F., Zhou, X., Goano, M., Ghione, G., Bellotti, E.: Auger recombination in InGaN/GaN quantum wells: a full-Brillouin-zone study. Appl. Phys. Lett. 103, 081106 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The author greatly benefited from communication with Dr. Joachim Piprek of the NUSOD Institute on the subject of hot-Auger carriers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. Simon Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon Li, Z.M. Non-local transport in numerical simulation of GaN LED. J Comput Electron 14, 409–415 (2015). https://doi.org/10.1007/s10825-015-0693-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0693-1

Keywords

Navigation