Skip to main content

Nano-heat Transfer in GAAFET Transistor Using Single-Phase-Lag Model

  • Conference paper
  • First Online:
Advances in Materials, Mechanics and Manufacturing II (A3M 2021)

Abstract

Due to the progress of devices miniaturization combined with the increase in packing density in integrated circuits, modern transistors, such as Gate All Around Field Effect Transistors (GAAFETs), suffer from excessive thermal confinement. This causes in device a self-heating problem which can increases leakage and destroy device performance. In this context, we propose in this paper to investigate the self-heating effect (SHE) in the Triple-Material-Surrounding-Gate-Field-Effect-Transistor (TMSG-FET) using an electro-thermal model. Numerical simulation is based on solving the semiconductor equations (Poisson and continuities equations) coupled with the heat transfer equation. The Single-Phase-Lag (SPL) non-linear heat conduction model has been used to describe the nano-heat. The numerical solutions have been developed based on the finite element method. The results are also compared to the classical Fourier-Kirchhoff Law. The electrical and thermal properties of the TMSG transistor have been analyzed. The obtained results predict an appropriate electrical behavior of the simulated structure. However, the TMSG device suffers more from a self-heating problem illustrated with a significant local temperature. This result proves the poor thermal management of this nanowire structure. On the other hand, the wave properties in the temperature response are observed using the SPL model, which makes it more suitable for estimating the self-heating effect in the device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Koh, M., et al.: Limit of gate oxide thickness scaling in MOSFETs due to apparent threshold voltage fluctuation induced by tunnel leakage current. IEEE Trans. Electron Devices 48(2), 259–264 (2001)

    Article  Google Scholar 

  2. Reuveny, A., et al.: Thermal stability of organic transistors with short channel length on ultrathin foils. Org. Electron. 26, 279–284 (2015)

    Article  Google Scholar 

  3. Belkhiria, M., et al.: Impact of high-k gate dielectric on self-heating effects in PiFETs structure. IEEE Trans. Electron Devices 67(9), 3522–3529 (2020)

    Article  Google Scholar 

  4. Cai, L., et al.: Layout design correlated with self-heating effect in stacked nanosheet transistors. IEEE Trans. Electron Devices 65(6), 2647–2653 (2018)

    Article  Google Scholar 

  5. Garegnani, G., et al.: Wafer level measurements and numerical analysis of self-heating phenomena in nano-scale SOI MOSFETs. Microelectron. Reliab. 63, 90–96 (2016)

    Article  Google Scholar 

  6. Belmabrouk, H., Rezgui, H., Nasri, F., Aissa, M.F.B., Guizani, A.A.: Interfacial heat transport across multilayer nanofilms in ballistic–diffusive regime. Eur. Phys. J. Plus 135(1), 1–17 (2020). https://doi.org/10.1140/epjp/s13360-020-00180-7

    Article  Google Scholar 

  7. Rezgui, H., et al.: Investigation of heat transport across Ge/Si interface using an enhanced ballistic-diffusive model. Superlattices Microstruct. 124, 218–230 (2018)

    Article  Google Scholar 

  8. Chen, J., Zhang, X.: Non-Fourier effects on the temperature time-dependence of a silicon igniter. IEEE Electron Device Lett. 40(6), 854–857 (2019)

    Article  Google Scholar 

  9. Belkhiria, M., Echouchene, F., Mejri, H.: Nanoscale heat transfer in MOSFET transistor with high-k dielectrics using a non linear DPL heat conduction model. In: 2018 9th International Renewable Energy Congress (IREC). IEEE (2018)

    Google Scholar 

  10. Echouchene, F., Mabrouk, H.B.: Non equilibrium entropy generation in nano scale MOSFET transistor based a nonlinear DPL heat conduction model. In: 2018 9th International Renewable Energy Congress (IREC). IEEE (2018)

    Google Scholar 

  11. Echouchene, F., Belmabrouk, H.: Effect of temperature jump on nonequilibrium entropy generation in a MOSFET transistor using dual-phase-lagging model. J. Heat Transfer 139(12) (2017). https://doi.org/10.1115/1.4037061

  12. Ahn, W., et al.: Integrated modeling of self-heating of confined geometry (FinFET, NWFET, and NSHFET) transistors and its implications for the reliability of sub-20 nm modern integrated circuits. Microelectron. Reliab. 81, 262–273 (2018)

    Article  Google Scholar 

  13. O’Neill, A., et al.: Reduced self-heating by strained silicon substrate engineering. Appl. Surf. Sci. 254(19), 6182–6185 (2008)

    Article  Google Scholar 

  14. Cattaneo, C.: A form of heat-conduction equations which eliminates the paradox of instantaneous propagation. Comptes. Rendus. 247, 431 (1958)

    Google Scholar 

  15. Vernotte, P.: Les paradoxes de la theorie continue de l’equation de la chaleur. Compt. Rendu. 246, 3154–3155 (1958)

    Google Scholar 

  16. Sellitto, A., Carlomagno, I., Jou, D.: Two-dimensional phonon hydrodynamics in narrow strips. Proc. Royal Soc. A: Math. Phys. Eng. Sci. 471(2182), 20150376 (2015)

    Article  MathSciNet  Google Scholar 

  17. Belkhiria, M., et al.: 2-D-Nonlinear electrothermal model for investigating the self-heating effect in GAAFET transistors. IEEE Trans. Electron Devices 68, 954–961 (2021). https://doi.org/10.1109/TED.2020.3048919

  18. Yi, M., Yin, W.-Y.: Electrothermomechanical analysis of partially insulated field-effect transistors using hybrid nonlinear finite element method. Microelectron. Reliab. 51(5), 895–903 (2011)

    Article  Google Scholar 

  19. Nasri, F., Aissa, M.F.B., Belmabrouk, H.: Nonlinear electrothermal model for investigation of heat transfer process in a 22-nm FD-SOI MOSFET. IEEE Trans. Electron Devices 64(4), 1461–1466 (2017)

    Article  Google Scholar 

  20. Echouchene, F., Jemii, E.: Analysis of the transient Joule heating effect in a conductive-bridge random-access memory (CBRAM) using a single-phase-lag (SPL) model. J. Comput. Electron. 20(3), 1422–1429 (2021). https://doi.org/10.1007/s10825-021-01681-z

    Article  Google Scholar 

  21. Xu, B., Li, B.: Finite element solution of non-Fourier thermal wave problems. Num. Heat Transfer: Part B: Fundamentals 44(1), 45–60 (2003)

    Article  Google Scholar 

  22. Ben Belgacem, I., Khochtali, H., Cheikh, L., Barhoumi, E.M., Ben Salem, W.: Comparison between two numerical methods SPH/FEM and CEL by numerical simulation of an impacting water jet. In: Chaari, F., et al. (eds.) Advances in Materials, Mechanics and Manufacturing. LNME, pp. 50–60. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-24247-3_7

    Chapter  Google Scholar 

  23. Singh, N., et al.: High-performance fully depleted silicon nanowire (diameter/spl les/5 nm) gate-all-around CMOS devices. IEEE Electron Device Lett. 27(5), 383–386 (2006)

    Article  Google Scholar 

  24. Dhanaselvam, P.S., Balamurugan, N.: Analytical approach of a nanoscale triple-material surrounding gate (TMSG) MOSFETs for reduced short-channel effects. Microelectron. J. 44(5), 400–404 (2013)

    Article  Google Scholar 

  25. Pal, A., Sarkar, A.: Analytical study of dual material surrounding gate MOSFET to suppress short-channel effects (SCEs). Eng. Sci. Technol. Int. J. 17(4), 205–212 (2014)

    Google Scholar 

  26. Pratap, Y., et al.: An analytical subthreshold current modeling of cylindrical gate all around (CGAA) MOSFET incorporating the influence of device design engineering. Microelectron. J. 45(4), 408–415 (2014)

    Article  Google Scholar 

  27. Park, J.-Y., et al.: Investigation of self-heating effects in gate-all-around MOSFETs with vertically stacked multiple silicon nanowire channels. IEEE Trans. Electron Devices 64(11), 4393–4399 (2017)

    Article  Google Scholar 

  28. Shora, A.T., Khanday, F.A.: Analytical modelling and performance analysis of gate-and channel-engineered trapezoidal trigate MOSFET. IET Circuits Devices Syst. 13(8), 1107–1116 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Belkhiria, M., Echouchene, F., Jaba, N. (2022). Nano-heat Transfer in GAAFET Transistor Using Single-Phase-Lag Model. In: Ben Amar, M., Bouguecha, A., Ghorbel, E., El Mahi, A., Chaari, F., Haddar, M. (eds) Advances in Materials, Mechanics and Manufacturing II. A3M 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-84958-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84958-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84957-3

  • Online ISBN: 978-3-030-84958-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics