Skip to main content
Log in

Improvement of electrical characteristics of local BOX MOSFETs by heavily doped structures and elucidation of the related mechanism

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We proposed heavily doped silicon between insulators (HDSBI) MOSFETs to improve electrical characteristics of local BOX MOSFETs by using simple structures that combine local BOX regions with additional doped regions. HDSBI MOSFETs have heavily doped regions between local BOX regions, in which acceptors or traps are introduced. Simulated electrical characteristics demonstrated that they can suppress the SCEs and the kink effect, as well as the self-heating effect (SHE), which is suppressed by conventional local BOX MOSFETs. We elucidated how the additional doped regions in HDSBI MOSFETs suppress the SCEs and the kink effect. We concluded that HDSBI MOSFETs are suitable for applications, such as multi-purpose system-on-chip on which both short-channel logic circuits and high drive current circuits are integrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Colinge, J.-P.: Silicon-on-Insulator Technology: Materials to VLSI. Kluwer, Boston (2004)

    Book  Google Scholar 

  2. Kleiner, M.B., Kuhn, S.A., Weber, W.: Thermal conductivity measurements of thin silicon dioxide films in integrated circuits. IEEE Trans. Electron Devices 43, 1602–1609 (1996)

    Article  Google Scholar 

  3. Choi, J.-Y., Fossum, J.G.: Analysis and control of floating-body bipolar effects in fully depleted submicrometer SOI MOSFET’s. IEEE Trans. Electron Devices 38, 1384–1391 (1991)

    Article  Google Scholar 

  4. Koh, R.: Buried layer engineering to reduce the drain-induced barrier lowering of sub-0.05 μm SOI-MOSFET. Jpn. J. Appl. Phys. 38, 2294–2299 (1999)

    Article  Google Scholar 

  5. Monfray, S., Skotnicki, T., Fenouillet-Beranger, C., Carriere, N., Chanemougame, D., Morand, Y., Descombes, S., Talbot, A., Dutartre, D., Jenny, C., Mazoyer, P., Palla, R., Leverd, F., Le Friec, Y., Pantel, R., Borel, S., Louis, D., Buffet, N.: Emerging silicon-on-nothing (SON) devices technology. Solid-State Electron. 48, 887–895 (2004)

    Article  Google Scholar 

  6. Yamada, T., Nakajima, Y., Hanajiri, T., Sugano, T.: Suppression of drain-induced barrier lowering in silicon-on-insulator MOSFETs through source/drain engineering for low-operating-power system-on-chip applications. IEEE Trans. Electron Devices 60, 260–267 (2013)

    Article  Google Scholar 

  7. Yamada, T., Abe, S., Nakajima, Y., Hanajiri, T., Toyabe, T., Sugano, T.: Quantitative extraction of electric flux in the buried-oxide layer and investigation of its effects on MOSFET characteristics. IEEE Trans. Electron Devices 60, 3996–4001 (2013)

    Article  Google Scholar 

  8. He, P., Jiang, B., Lin, X., Liu, L., Tian, L., Li, Z., Dong, Y., Chen, M., Wang, X.: Experimental results on drain and source on insulator MOSFETs fabricated by local SIMOX technology. Solid-State Electron. 47, 1061–1067 (2003)

    Article  Google Scholar 

  9. Dong, Y., Chen, M., Chen, J., Wang, X., Wang, X., He, P., Lin, X., Tian, L., Li, Z.: Patterned buried oxide layers under a single MOSFET to improve the device performance. Semicond. Sci. Technol. 19, L25–L28 (2004)

    Article  Google Scholar 

  10. Tian, Y., Huang, R., Zhang, X., Wang, Y.: A novel nanoscaled device concept: quasi-SOI MOSFET to eliminate the potential weaknesses of UTB SOI MOSFET. IEEE Trans. Electron Devices 52, 561–568 (2005)

    Article  Google Scholar 

  11. Tian, Y., Xiao, H., Huang, R., Feng, C., Chan, M., Chen, B., Wang, R., Zhang, X., Wang, Y.: Quasi-SOI MOSFETs—a promising bulk device candidate for extremely scaled era. IEEE Trans. Electron Devices 54, 1784–1788 (2007)

    Article  Google Scholar 

  12. Xiao, H., Huang, R., Liang, J., Liu, H., Tian, Y., Wang, R., Wang, Y.: The localized-SOI MOSFET as a candidate for analog/RF applications. IEEE Trans. Electron Devices 54, 1978–1984 (2007)

    Article  Google Scholar 

  13. Lin, J.-T., Eng, Y.-C.: Influence of block oxide width on a silicon-on-partial-insulator field-effect transistor. IEEE Trans. Electron Devices 54, 2893–2900 (2007)

    Article  Google Scholar 

  14. Wong, H.-S.P., Frank, D.J., Solomon, P.M.: Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET’s at the 25 nm channel length generation. In: International Electron Devices Meeting 1998. Technical Digest (Cat. No. 98CH36217), pp. 407–410. IEEE, New York (1998)

    Chapter  Google Scholar 

  15. Narasimhulu, K., Sharma, D.K., Rao, V.R.: Impact of lateral asymmetric channel doping on deep submicrometer mixed-signal device and circuit performance. IEEE Trans. Electron Devices 50, 2481–2489 (2003)

    Article  Google Scholar 

  16. Hu, G., Dennard, R.H., Terman, L.M., Petrillo, K.E.: A self-aligned 1-µ m-channel CMOS technology with retrograde n-well and thin epitaxy. IEEE Trans. Electron Devices 32, 203–209 (1985)

    Article  Google Scholar 

  17. Ogura, S., Tsang, P.J., Walker, W.W., Critchlow, D.L., Shepard, J.F.: Design and characteristics of the lightly doped drain-source (LDD) insulated gate field-effect transistor. IEEE Trans. Electron Devices 27, 1359–1367 (1980)

    Article  Google Scholar 

  18. TCAD Sentaurus: http://www.synopsys.com/Tools/TCAD/

  19. Wachutka, G.: An extended thermodynamic model for the simultaneous simulation of the thermal and electrical behavior of semiconductor devices. In: Proceedings of the Sixth International Conference on the Numerical Analysis of Semiconductor Devices and Integrated Circuits (NASECODE VI), Dublin, Ireland, pp. 409–414 (1989)

    Google Scholar 

  20. Ancona, M., Iafrate, G.: Quantum correction to the equation of state of an electron gas in a semiconductor. Phys. Rev. B 39, 9536–9540 (1989)

    Article  Google Scholar 

  21. Paasch, G., Übensee, H.: A modified local density approximation. electron density in inversion layers. Phys. Status Solidi 113, 165–178 (1982)

    Article  Google Scholar 

  22. Schenk, A.: Rigorous theory and simplified model of the band-to-band tunneling in silicon. Solid-State Electron. 36, 19–34 (1993)

    Article  Google Scholar 

  23. Van Overstraeten, R., De Man, H.: Measurement of the ionization rates in diffused silicon p–n junctions. Solid-State Electron. 13, 583–608 (1970)

    Article  Google Scholar 

  24. Kim, S.-D.: Optimum location of silicide/Si interface in ultra-thin body SOI MOSFETs with recessed and elevated silicide source/drain contact structure. Solid-State Electron. 53, 1112–1115 (2009)

    Article  Google Scholar 

  25. Brammer, T., Stiebig, H.: Defect density and recombination lifetime in microcrystalline silicon absorbers of highly efficient thin-film solar cells determined by numerical device simulations. J. Appl. Phys. 94, 1035 (2003)

    Article  Google Scholar 

  26. Hack, M., Shur, M.: Analysis of light-induced degradation in amorphous silicon alloy p–i–n solar cells. J. Appl. Phys. 58, 1656 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by VLSI Design and Education Center (VDEC), the University of Tokyo in collaboration with Synopsys, Inc. The part of the device simulations has been supported by Y. Miyazawa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, T., Nakajima, Y., Hanajiri, T. et al. Improvement of electrical characteristics of local BOX MOSFETs by heavily doped structures and elucidation of the related mechanism. J Comput Electron 13, 400–407 (2014). https://doi.org/10.1007/s10825-013-0549-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-013-0549-5

Keywords

Navigation