Skip to main content
Log in

Linear and nonlinear optical properties of multi-layered spherical nano-systems with donor impurity in the center

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this study, the linear, third-order nonlinear and total absorption coefficients (ACs) of multi-layered quantum dot (MLQD) and multi-layered quantum anti-dot (MLQAD) with a hydrogenic impurity are calculated. The analytical and numerical solutions of Schrödinger equation for both MLQD and MLQAD, within the effective mass approximation and dielectric continuum model, are obtained. As our numerical results indicate, an increase in the optical intensity changes the total AC considerably, but the intensity range that leads to these changes is different for MLQAD and MLQD. It is observed that by changing the incident photon energy, the AC curves corresponding to MLQAD and MLQD are of different shapes and behaviors. The peak heights of AC curves corresponding to MLQAD are strongly affected by changing the core antidot radius and the shell thickness values, however in these cases no considerable changes are observed in peak heights of MLQD. Furthermore, in contrast to MLQAD, the photon energies corresponding to total AC peaks of MLQD are more affected by changing the confining potentials (CPs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davatolhagh, S., Jafari, A.R., Vahdani, M.R.K.: Superlattices Microstruct. 51, 62 (2012)

    Article  Google Scholar 

  2. Holovatsky, V.A., Makhanets, O.M., Voitsekhivska, O.M.: Physica E 41, 1522 (2009)

    Article  Google Scholar 

  3. Varshni, Y.P.: Phys. Lett. A 252, 248 (1999)

    Article  Google Scholar 

  4. Sadeghi, E.: Physica E 41, 1319 (2009)

    Article  Google Scholar 

  5. Vaseghi, B., Rezaei, G., Azizi, V., Taghizadeh, F.: Physica E 43, 1080 (2011)

    Article  Google Scholar 

  6. Hsieh, C.Y., Chuu, D.S.J.: Phys. Condens. Matter 12, 5641 (2000)

    Article  Google Scholar 

  7. Naimi, Y., Jafari, A.R.: J. Comput. Electron. 11, 414 (2012)

    Article  Google Scholar 

  8. Atanasov, R., Bassani, F., Agranovich, V.M.: Phys. Rev. B 50, 7809 (1994)

    Article  Google Scholar 

  9. Tsang, L., Ahn, D., Chuang, S.L.: Appl. Phys. Lett. A 362, 37 (2007)

    Article  Google Scholar 

  10. Karimi, M.J., Rezaei, G.: Physica B 406, 4423 (2011)

    Article  Google Scholar 

  11. Yang, W., Song, X., Li, R., Xu, Z.: Phys. Rev. A 78, 023836 (2008)

    Article  Google Scholar 

  12. Xie, W., Liang, S.: Physica B 406, 4657 (2011)

    Article  Google Scholar 

  13. Bockelman, U., Bastard, G.: Phys. Rev. B 45, 1688 (1992)

    Article  Google Scholar 

  14. Troccoli, M., Belyanin, A., Capasso, F., Kubukcu, E., Sinco, D.J., Cho, A.Y.: Nature 433, 845 (2005)

    Article  Google Scholar 

  15. Jiang, X., Li, S.S., Tidrow, M.Z.: Physica E 5, 27 (1999)

    Article  Google Scholar 

  16. Liu, C., Xu, B.: Phys. Lett. A 372, 888 (2008)

    Article  MATH  Google Scholar 

  17. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Nanotechnology 4, 49 (1993)

    Article  Google Scholar 

  18. Unlu, S., Karabulut, I., Safak, H.: Physica E 33, 319 (2006)

    Article  Google Scholar 

  19. Wei, R., Xie, W.: Curr. Appl. Phys. 10, 757 (2010)

    Article  Google Scholar 

  20. Li, X.C., Wang, A.M., Wang, Z.L., Yang, Y.: Superlattices Microstruct. 51, 580 (2012)

    Article  Google Scholar 

  21. Zhang, C., Wang, Z., Gu, M., Liu, Y., Guo, K.: Physica B 405, 4366 (2010)

    Article  Google Scholar 

  22. Liang, S., Xie, W., Sarkisyan, H.A., Meliksetyan, A.V., Shen, H.: Superlattices Microstruct. 51, 868 (2012)

    Article  Google Scholar 

  23. Karabulut, I., Baskoutas, S.J.: Appl. Phys. 103, 073512 (2008)

    Article  Google Scholar 

  24. Cakir, B., Yakar, Y., Ozmen, A.: J. Lumin. 132, 2659 (2012)

    Article  Google Scholar 

  25. Ozmen, A., Yakar, Y., Cakir, B., Atav, U.: Opt. Commun. 282, 3999 (2009)

    Article  Google Scholar 

  26. Kordad, R.: Indian J. Phys. 86, 513 (2012)

    Article  Google Scholar 

  27. Efros, A.Al., Efros, A.: Sov. Phys. Semicond. 16, 772 (1982)

    Google Scholar 

  28. Zettili, N.: Quantum Mechanic, Concept and Application, pp. 287–289. Wiley, New York (2001)

    Google Scholar 

  29. Abramowitz, A., Stegun, I.: Handbook of Mathematical Function with Formulas, Graphs and Mathematical Tables, pp. 505–509. US GPO, Washington (1994)

    Google Scholar 

  30. Adachi, S.: J. Appl. Phys. 58, R1 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank H. Mosavi and M. Rahimi for a number of useful comments and suggestions. This work was supported by the research council of the Islamic Azad University, Lamerd Branch

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Naimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafari, A.R., Naimi, Y. Linear and nonlinear optical properties of multi-layered spherical nano-systems with donor impurity in the center. J Comput Electron 12, 36–42 (2013). https://doi.org/10.1007/s10825-013-0432-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-013-0432-4

Keywords

Navigation