Skip to main content
Log in

Graph Theory in Coq: Minors, Treewidth, and Isomorphisms

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

We present a library for graph theory in Coq/Ssreflect. This library covers various notions on simple graphs, directed graphs, and multigraphs. We use it to formalize several results from the literature: Menger’s theorem, the excluded-minor characterization of treewidth-two graphs, and a correspondence between multigraphs of treewidth at most two and terms of certain algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. To be fully precise, we use the type \(\varSigma x:G.\,x \in U = \textsf {true}\), exploiting that set membership is decidable. Since equality between booleans is proof irrelevant (i.e., there is at most one proof of \(x \in U = \textsf {true}\)), this ensures that \(\left| (G|_U)\right| = |\varSigma x:G.\,x \in U| = |U|\). This is a standard technique used pervasively in the mathematical components library.

  2. Note that \(\overline{V_2} = V_1 \setminus V_2\) if \( V_1 \cup V_2 = V\).

  3. To be precise, the functional may call its argument on anything. However, the result may only depend on calls to smaller arguments in the domain.

References

  1. Chekuri, C., Rajaraman, A.: Conjunctive query containment revisited. Theoret. Comput. Sci. 239(2), 211–229 (2000). https://doi.org/10.1016/S0304-3975(99)00220-0

    Article  MathSciNet  MATH  Google Scholar 

  2. Chou, C.: A formal theory of undirected graphs in higher-order logic. In: Melham, T.F., Camilleri, J. (eds.) TPHOL, Lecture Notes in Computer Science, vol. 859, pp. 144–157. Springer (1994). https://doi.org/10.1007/3-540-58450-1_40

  3. Chou, C.T.: Mechanical verification of distributed algorithms in higher-order logic*. Comput. J. 38(2), 152–161 (1995). https://doi.org/10.1093/comjnl/38.2.152

    Article  Google Scholar 

  4. Cohen, C.: Pragmatic quotient types in Coq. In: In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP, Lecture Notes in Computer Science, vol. 7998, pp. 213–228. Springer (2013). https://doi.org/10.1007/978-3-642-39634-2_17

  5. Cohen, C., Dénès, M., Mörtberg, A.: Refinements for free!. In: Gonthier, G., Norrish, M. (eds.) Certified Programs and Proofs (CPP 2013), Lecture Notes in Computer Science, vol. 8307, pp. 147–162. Springer, Berlin (2013). https://doi.org/10.1007/978-3-319-03545-1_10

    Chapter  Google Scholar 

  6. Courcelle, B.: The monadic second-order logic of graphs. I: recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990). https://doi.org/10.1016/0890-5401(90)90043-H

    Article  MathSciNet  MATH  Google Scholar 

  7. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic—A Language-Theoretic Approach, Encyclopedia of Mathematics and Its Applications, vol. 138. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  8. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, 2nd edn. Springer, Berlin (2000)

    Google Scholar 

  9. Doczkal, C., Combette, G., Pous, D.: Coq Formalization Accompanying This Paper. https://perso.ens-lyon.fr/damien.pous/covece/graphs/. Accessed 28 Jan 2020

  10. Doczkal, C., Combette, G., Pous, D.: A formal proof of the minor-exclusion property for treewidth-two graphs. In: Avigad, J., Mahboubi, A. (eds.) Interactive Theorem Proving (ITP 2018), Lecture Notes in Computer Science, vol. 10895, pp. 178–195. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-94821-8_11

    Chapter  Google Scholar 

  11. Doczkal, C., Pous, D.: Treewidth-two graphs as a free algebra. In: Potapov, I, Spirakis, P., Worrell, J. (eds.) MFCS, LIPIcs, vol. 117, pp. 60:1–60:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.MFCS.2018.60

  12. Doczkal, C., Pous, D.: Completeness of an axiomatization of graph isomorphism via graph rewriting in Coq. In: Proceedings of 9th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP ’20), January 20–21, 2020, New Orleans, LA, USA (2020). https://doi.org/10.1145/3372885.3373831

  13. Duffin, R.: Topology of series-parallel networks. J. Math. Anal. Appl. 10(2), 303–318 (1965). https://doi.org/10.1016/0022-247X(65)90125-3

    Article  MathSciNet  MATH  Google Scholar 

  14. Dufourd, J., Bertot, Y.: Formal study of plane Delaunay triangulation. In: Kaufmann, M., Paulson, L.C. (eds.) ITP, Lecture Notes in Computer Science, vol. 6172, pp. 211–226. Springer (2010). https://doi.org/10.1007/978-3-642-14052-5_16

  15. Freuder, E.C.: Complexity of k-tree structured constraint satisfaction problems. In: Shrobe, H.E., Dietterich, T.G., Swartout, W.R. (eds.) NCAI, pp. 4–9. AAAI Press/The MIT Press (1990)

  16. Freyd, P., Scedrov, A.: Categories, Allegories. Elsevier, North Holland (1990)

    MATH  Google Scholar 

  17. Gonthier, G.: Formal proof—the four-color theorem. Not. Am. Math. Soc. 55(11), 1382–1393 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Göring, F.: Short proof of menger’s theorem. Discrete Math. 219(1–3), 295–296 (2000). https://doi.org/10.1016/S0012-365X(00)00088-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM 54(1), 1:1–1:24 (2007). https://doi.org/10.1145/1206035.1206036

    Article  MathSciNet  MATH  Google Scholar 

  20. Hall, P.: On representatives of subsets. J. Lond. Math. Soc. 10, 26–30 (1935). https://doi.org/10.1112/jlms/s1-10.37.26

    Article  MATH  Google Scholar 

  21. Kuratowski, K.: Sur le problème des courbes gauches en topologie. Fund. Math. 15, 271–283 (1930). In French

    Article  Google Scholar 

  22. Lammich, P., Sefidgar, S.R.: Formalizing the Edmonds–Karp algorithm. In: Blanchette, J.C., Merz, S. (eds.) Interactive Theorem Proving (ITP 2016), Lecture Notes in Computer Science, vol. 9807, pp. 219–234. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-43144-4_14

    Chapter  Google Scholar 

  23. Llópez, E.C., Pous, D.: K4-free graphs as a free algebra. In: Larsen, K.G., Bodlaender, H.L., Raskin, J-F. (eds.) MFCS, LIPIcs, vol. 83, pp. 76:1–76:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.MFCS.2017.76

  24. Menger, K.: Zur allgemeinen Kurventheorie. Fund. Math. 10(1), 96–115 (1927)

    Article  Google Scholar 

  25. Nakamura, Y., Rudnicki, P.: Euler circuits and paths. Formal. Math. 6(3), 417–425 (1997)

    Google Scholar 

  26. Nipkow, T., Bauer, G., Schultz, P.: Flyspeck I: tame graphs. In: Furbach U., Shankar N. (eds.) IJCAR, Lecture Notes in Computer Science, vol. 4130, pp. 21–35. Springer (2006). https://doi.org/10.1007/11814771_4

  27. Noschinski, L.: A graph library for Isabelle. Math. Comput. Sci. 9(1), 23–39 (2015). https://doi.org/10.1007/s11786-014-0183-z

    Article  MathSciNet  MATH  Google Scholar 

  28. Paulson, L.C.: A formalisation of finite automata using hereditarily finite sets. In: Felty, A.P., Middeldorp, A. (eds.) Automated Deduction (CADE-25), Lecture Notes in Computer Science, vol. 9195, pp. 231–245. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-21401-6_15

    Chapter  Google Scholar 

  29. Pous, D., Vignudelli, V.: Allegories: decidability and graph homomorphisms. In: Dawar, A., Grädel, E. (eds.) LiCS, pp. 829–838. ACM (2018). https://doi.org/10.1145/3209108.3209172

  30. Robertson, N., Seymour, P.: Graph minors. XX. Wagner’s conjecture. J. Comb. Theory Ser. B 92(2), 325–357 (2004). https://doi.org/10.1016/j.jctb.2004.08.001

    Article  MathSciNet  MATH  Google Scholar 

  31. Severín, D.E.: Formalization of the domination chain with weighted parameters (short paper). In: Harrison, J., O’Leary, J., Tolmach, A. (eds.) Interactive Theorem Provin (ITP 2019), LIPIcs, vol. 141, pp. 36:1–36:7. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Wadern (2019). https://doi.org/10.4230/LIPIcs.ITP.2019.36

    Chapter  Google Scholar 

  32. Singh, A.K., Natarajan, R.: A constructive formalization of the weak perfect graph theorem. In: Proceedings of 9th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP ’20), January 20–21, 2020, New Orleans, LA, USA (2020)

  33. Sozeau, M.: A new look at generalized rewriting in type theory. J. Formaliz. Reason. 2(1), 41–62 (2009). https://doi.org/10.6092/issn.1972-5787/1574

    Article  MathSciNet  MATH  Google Scholar 

  34. The Mathematical Components team: Mathematical components (2017). http://math-comp.github.io/math-comp/. Accessed 28 Jan 2020

  35. Univalent Foundations Program, T.: Homotopy Type Theory: Univalent Foundations of Mathematics. http://homotopytypetheory.org/book, Institute for Advanced Study (2013)

Download references

Acknowledgements

We would like to thank Guillaume Combette, with whom we developed the first version of the library. We are also grateful to Nicolas Trotignon for his wonderful insights on graph theory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Doczkal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper extends and revises the results presented in [10]; the underlying Coq library is available from https://perso.ens-lyon.fr/damien.pous/covece/graphs/.

This work has been funded by the European Research Council (ERC) under the European Union’s Horizon 2020 programme (CoVeCe, Grant Agreement No. 678157), and was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon and \(\hbox {UCA}^{\text {JEDI}}\), within the programs “Investissements d’Avenir” ANR-11-IDEX-0007 and ANR-15-IDEX-01, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doczkal, C., Pous, D. Graph Theory in Coq: Minors, Treewidth, and Isomorphisms. J Autom Reasoning 64, 795–825 (2020). https://doi.org/10.1007/s10817-020-09543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-020-09543-2

Keywords

Navigation