Skip to main content
Log in

Using Well-Founded Relations for Proving Operational Termination

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

In this paper, we study operational termination, a proof theoretical notion for capturing the termination behavior of computational systems. We prove that operational termination can be characterized at different levels by means of well-founded relations on specific formulas which can be obtained from the considered system. We show how to obtain such well-founded relations from logical models which can be automatically generated using existing tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. See http://maude.cs.illinois.edu/.

  2. The labels of the rules refer to such a system: \( SR \) stands for subject reduction, \( M1 \) and \( M2 \) for membership-1/-2, \( Rf \) for reflexivity, \( Rl \) for replacement, and \( T \) for transitivity.

  3. Some new labels referring to such a system are used now: \( M1 \) for membership-1 and \( C \) for congruence.

  4. Since the drawing of the tree in (1) suggests the back of a skeleton, we use ‘spine’ for the central part, or backbone, of the tree.

  5. In the following, iff means if and only if.

  6. Following [18, Sect. 1.1], these sets can be empty.

  7. As in [18], we use ‘structure’ and reserve the word ‘model’ to refer to those structures satisfying a given set of sentences (theory).

  8. We use ‘hook’ because this formula is intended to ‘catch’ the head of the next inference rule in the spine.

  9. This transformation keeps no information about the matrix formula \(F\) in the universally quantified formula \((\forall x:s)\,F\). This could compromise the success of its use with Theorem 4 below. More precise transformations could be obtained by considering constants \(c_{x,F}\) indexed not only by variables x but also by formulas \(F\) and envisaging appropriate conditions on such constants so that stability holds.

References

  1. Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving termination properties with MU-TERM. In: Proceedings of AMAST’10, LNCS, vol. 6486, pp. 201–208, Springer (2011)

  2. Aguirre, L., Martí-Oliet, N., Palomino, M., Pita, I.: Sentence-normalized conditional narrowing modulo in rewriting logic and Maude. J. Automat. Reason. 60(4), 421–463 (2018)

    Article  MathSciNet  Google Scholar 

  3. Arts, T., Giesl, J.: Proving innermost normalisation automatically. In: Proceedings of RTA’97, LNCS, vol. 1232, pp. 157–171, Springer, Berlin (1997)

    Chapter  Google Scholar 

  4. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000)

    Article  MathSciNet  Google Scholar 

  5. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude—A High-Performance Logical Framework. LNCS, vol. 4350, Springer (2007)

  7. Durán, F., Lucas, S., Meseguer, J.: Methods for proving termination of rewriting-based programming languages by transformation. Electron. Notes Theor. Comput. Sci. 248, 93–113 (2009)

    Article  Google Scholar 

  8. Durán, F., Lucas, S., Marché, C., Meseguer, J., Urbain, X.: Proving operational termination of membership equational programs. High. Order Symb. Comput. 21(1–2), 59–88 (2008)

    Article  Google Scholar 

  9. Falke, S., Kapur, D.: Operational termination of conditional rewriting with built-in numbers and semantic data structures. Electron. Notes Theor. Comput. Sci. 237, 75–90 (2009)

    Article  Google Scholar 

  10. Floyd, R.W.: Assigning meanings to programs. Math. Asp. Comput. Sci. 19, 19–32 (1967)

    Article  MathSciNet  Google Scholar 

  11. Giesl, J., Arts, T.: Verification of Erlang processes by dependency pairs. Appl. Algebra Eng. Commun. Comput. 12, 39–72 (2001)

    Article  MathSciNet  Google Scholar 

  12. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reason. 37(3), 155–203 (2006)

    Article  MathSciNet  Google Scholar 

  13. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: combining techniques for automated termination proofs. In: Proceedings of LPAR’04, LNAI, vol. 3452, pp. 301–331 (2004)

    Chapter  Google Scholar 

  14. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termination proofs in the dependency pair framework. In: Proceedings of IJCAR’06, LNAI, vol. 4130, pp. 281–286 (2006)

  15. Goguen, J., Meseguer, J.: Models and equality for logical programming. In: Proceedings of TAPSOFT’87, LNCS, vol. 250, pp. 1–22 (1987)

  16. Goguen, J., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci. 105, 217–273 (1992)

    Article  MathSciNet  Google Scholar 

  17. Gutiérrez, R., Lucas, S., Reinoso, P.: A tool for the automatic generation of logical models of order-sorted first-order theories. In: Proceedings of PROLE’16, pp. 215–230 (2016)

  18. Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  19. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2. In: Proceedings of RTA 2009, LNCS, vol. 5595, pp. 295–304 (2009)

    Chapter  Google Scholar 

  20. Lalement, R.: Computation as Logic. Masson-Prentice Hall International, Paris (1993)

    MATH  Google Scholar 

  21. Lucas, S.: Context-sensitive rewriting strategies. Inf. Comput. 178(1), 294–343 (2002)

    Article  MathSciNet  Google Scholar 

  22. Lucas, S.: Use of logical models for proving operational termination in general logics. In: Selected Papers from WRLA’16, LNCS, vol. 9942, pp. 1–21 (2016)

  23. Lucas, S.: Directions of operational termination. In: Proceedings of PROLE’18. http://hdl.handle.net/11705/PROLE/2018/009 (2018). Accessed 9 Feb 2019

  24. Lucas, S., Gutiérrez, R.: Automatic synthesis of logical models for order-sorted first-order theories. J. Autom. Reason. 60(4), 465–501 (2018)

    Article  MathSciNet  Google Scholar 

  25. Lucas, S., Gutiérrez, R.: Use of logical models for proving infeasibility in term rewriting. Inf. Process. Lett. 136, 90–95 (2018)

    Article  MathSciNet  Google Scholar 

  26. Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf. Process. Lett. 95, 446–453 (2005)

    Article  MathSciNet  Google Scholar 

  27. Lucas, S., Meseguer, J.: Dependency pairs for proving termination properties of conditional term rewriting systems. J. Log. Algebr. Methods Program. 86, 236–268 (2017)

    Article  MathSciNet  Google Scholar 

  28. Lucas, S., Meseguer, J.: Proving operational termination of declarative programs in general logics. In: Proceedings of PPDP’14, pp. 111–122. ACM Digital Library (2014)

  29. McCune, W.: Prover9 & Mace4. http://www.cs.unm.edu/~mccune/prover9/ (2005–2010). Accessed 9 Feb 2019

  30. Mendelson, E.: Introduction to Mathematical Logic, 4th edn. Chapman & Hall, London (1997)

    MATH  Google Scholar 

  31. Meseguer, J.: General logics. In: Logic Colloquium’87, pp. 275–329 (1989)

    Google Scholar 

  32. O’Donnell, M.J.: Equational Logic as a Programming Language. The MIT Press, Cambridge (1985)

    MATH  Google Scholar 

  33. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Berlin (2002)

    Book  Google Scholar 

  34. Prawitz, D.: Natural Deduction. A Proof Theoretical Study. Almqvist & Wiksell, 1965. Reprinted by Dover Publications (2006)

  35. Rosu, G., Stefanescu, A., Ciobaca, S., Moore, B.M.: One-path reachability logic. In: Proceedings of LICS 2013, pp. 358–367. IEEE Press (2013)

  36. Shapiro, S.: Foundations Without Foundationalism: A Case for Second-Order Logic. Clarendon Press, Oxford (1991)

    MATH  Google Scholar 

  37. Schernhammer, F., Gramlich, B.: Characterizing and proving operational termination of deterministic conditional term rewriting systems. J. Log. Algebr. Program. 79, 659–688 (2010)

    Article  MathSciNet  Google Scholar 

  38. Serbanuta, T., Rosu, G.: Computationally equivalent elimination of conditions. In: Proceedings of RTA’06, LNCS, vol. 4098, pp. 19–34. Springer, Berlin (2006)

    Google Scholar 

  39. Turing, A.M.: Checking a large routine. In: Report of a Conference on High Speed Automatic Calculating Machines, Univ. Math. Lab., Cambridge, pp. 67–69 (1949)

Download references

Acknowledgements

I thank the anonymous referees for their comments and suggestions, leading to many improvements in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Lucas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by the EU (FEDER), Projects TIN2015-69175-C4-1-R, and GV PROMETEOII/2015/013.

Appendices

A. Infeasibility of Proof Jumps for \({\mathtt {INF}}\) Proved with AGES (Example 11)

Example 11 claims for infeasibility of rule \(( Rl )\) in Fig. 2, i.e., of

$$\begin{aligned} \begin{array}{c} \displaystyle {\mathtt {a}}:{\mathtt {S}}\\ \hline \displaystyle {\mathtt {a}}\rightarrow {\mathtt {b}} \end{array} \end{aligned}$$

We use AGES to find a model of \(\overline{{\mathtt {INF}}}\cup \{\lnot \,{\mathtt {a}}:{\mathtt {S}}\}\).

AGES specification.

figure g

AGES goal.

Note: universal quantification is implicit in AGES.

figure h

AGES   output.

figure i

Example 11 also claims infeasibility of \([ T ]^2\), i.e., of

$$\begin{aligned} x \rightarrow ^* z\!\mathrm {\;\; \Uparrow \;\;}\! x \rightarrow y,~ y \rightarrow ^* z \end{aligned}$$

We use AGES to find a model of \(\overline{{\mathtt {INF}}}\cup \{\lnot \,(\exists x)(\exists y)\,x \rightarrow y\}\).The specification is the same as for the previous example. The goal is also the same except for

figure j

AGES  output.

figure k

B. Infeasibility of Proof Jumps of \({\mathtt {3*NAT}}\) Proved with Mace4 (Example 12)

Example 12 claims for infeasibility of the proof jump \([( SR )_ Z ]^2\), i.e., of

$$\begin{aligned} x:{\mathtt {Zero}}\!\mathrm {\;\; \Uparrow \;\;}\! x \rightarrow y, ~ y:{\mathtt {Zero}} \end{aligned}$$

We use Mace4 to find a model of \(\overline{{\mathtt {3*NAT}}}\cup \{\lnot \,(\exists x,y)\,x \rightarrow y\}\). We use the following symbols:

figure l

Mace4  assumptions

figure m

Mace4  goal

figure n

Mace4  output

figure o

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucas, S. Using Well-Founded Relations for Proving Operational Termination. J Autom Reasoning 64, 167–195 (2020). https://doi.org/10.1007/s10817-019-09514-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-019-09514-2

Keywords

Navigation