Skip to main content
Log in

On the Formalization of Gamma Function in HOL

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

The Gamma function is a special transcendental function that is widely used in probability theory, fractional calculus and analytical number theory. This paper presents a higher-order logic formalization of the Gamma function using the HOL4 theorem prover. The contribution of this paper can be mainly divided into two parts. Firstly, we extend the existing integration theory of HOL4 by formalizing a variant of improper integrals using sequential limits. Secondly, we build upon these results to formalize the Gamma function and verify some of its main properties, such as pseudo-recurrence relation, functional equation and factorial generalization. In order to illustrate the practical effectiveness and utilization of our work, we formally verify some properties of Euler’s generalized power rule of differentiation, Mittag-Leffler functions and the relationship between the Exponential and Gamma random variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uncertain Singular Expressions in Mathematica. (2014). http://reference.wolfram.com/mathematica/ref/FullSimplify.html

  2. Al-Ahmadi, S., Yanikomeroglu, H.: On the approximation of the generalized-k distribution by a gamma distribution for modeling composite fading channels. Trans. Wirel. Commun. 9(2), 706–713 (2010)

    Article  Google Scholar 

  3. Artin, E.: The Gamma Function. Athena Series (1964)

  4. Baumann, G.: Fractional calculus and symbolic solution of fractional differential equations. In: Fractals in Biology and Medicine, Mathematics and Biosciences in Interaction, pp. 287–298. Birkhäuser Basel (2005)

  5. Butler, R.W.: Formalization of the integral calculus in the PVS theorem prover. J. Formalized Reason. 2(1), 1–26 (2009)

    MATH  Google Scholar 

  6. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5, 56–68 (1940)

    Article  MathSciNet  Google Scholar 

  7. Cruz-Filipe, L.: Constructive Real Analysis: A Type-Theoretical Formalization and Applications. Ph.D. Thesis, University of Nijmegen (2004)

    Google Scholar 

  8. Cheng, Q., Cui, T.J., Zhang, C.: Waves in planar waveguide containing Chiral Nihility metamaterial. Opt. Commun. 276(2), 317–321 (2007)

  9. Dalir, M., Bashour, M.: Application of fractional calculus. Appl. Fractional Calc. Phys. 4(21), 12 (2010)

    MathSciNet  Google Scholar 

  10. Das, S.: Functional Fractional Calculus for System Identification and Controls, 1st edn (2007)

  11. Elleuch, M., Hasan, O., Tahar, S., Abid, M.: Formal analysis of a scheduling algorithm for wireless sensor networks. In: Formal Engineering Methods LNCS, vol. 6991, pp 388–403. Springer (2011)

  12. Engheta, N.: On the Role of Fractional Calculus in Electromagnetic Theory. Antennas and Propagation Magazine. IEEE

  13. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL A Theorem Proving Environment for Higher-Order Logic. Cambridge University Press (1993)

  14. Hallen, M., Li, B., Tanouchi, Y., Tan, C., West, M., You, L.: Computation of steady-state probability distributions in stochastic models of cellular networks. PLoS Comput. Biol. 7(10), e1002,209, 1–16 (2011)

    MathSciNet  Google Scholar 

  15. Harrison, J.: Formalized Mathematics. Tech. Rep. 36, Turku Centre for Computer Science (1996)

  16. Harrison, J.: HOL light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.): Proceedings of the First International Conference on Formal Methods in Computer-Aided Design (FMCAD’96), Lecture Notes in Computer Science, vol. 1166, pp 265–269. Springer-Verlag (1996)

  17. Harrison, J.: Theorem Proving with the Real Numbers. Springer-Verlag (1998)

  18. Harrison, J.: Formalizing basic complex analysis. In: From Insight to Proof: Festschrift in Honour of Andrzej Trybulec, Studies in Logic, Grammar and Rhetoric, vol. 10, no. 23, pp. 151–165. University of Białystok (2007)

  19. Harrison, J.: The HOL light theory of Euclidean space. J. Autom. Reason. 50(2), 173–190 (2013)

    Article  MATH  Google Scholar 

  20. Hasan, O.: Formal Probabilistic Analysis using Theorem Proving. Ph.D. Thesis, Concordia University, Montreal, P.Q., Canada (2008)

    Google Scholar 

  21. Hasan, O.: Formal Probabilistic Analysis using Theorem Proving. Ph.D. Thesis, Concordia University, Montreal, QC, Canada (2008)

    Google Scholar 

  22. Hasan, O., Abbasi, N., Akbarpour, B., Tahar, S., Akbarpour, R.: Formal reasoning about expectation properties for continuous random variables. In: Formal Methods, LNCS, vol. 5850, pp 435–450. Springer (2009)

  23. Hasan, O., Tahar, S.: Formalization of the continuous probability distributions. In: Automated Deduction, LNAI, vol. 4603, pp 3–18. Springer (2007)

  24. Hasan, O., Tahar, S.: Using theorem proving to verify expectation and variance for discrete random variables. J. Autom. Reason. 41(3–4), 295–323 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Haubold, H.J., A.M. Saxena, R.: Mittag-leffler functions and their applications. J. Appl. Math. 2011, 51 (2011)

    Article  Google Scholar 

  26. Holzl, J., Heller, A.: Three chapters of measure theory in Isabelle/HOL. In: Interactive Theorem Proving, LNCS, vol. 6172, pp 135–151. Springer (2011)

  27. Hurd, J.: Formal Verification of Probabilistic Algorithms. Ph.D. Thesis, University of Cambridge, Cambridge, UK (2002)

    Google Scholar 

  28. Jr., E.M.C., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)

  29. Levine, M.W.: Variability in the maintained discharges of retinal ganglion cells. J. Opt. Soc. Am. A 4(12), 2308–2320 (1987)

    Article  Google Scholar 

  30. Liu, L., Hasan, O., Tahar, S.: Formalization of finite-state discrete-time Markov chains in HOL. In: Automated Technology for Verification and Analysis, LNCS, vol. 6996, pp 90–104. Springer (2011)

  31. Lozier, D.W., Olver, F.W.J.: Numerical evaluation of special functions. , Gautschi, W. (ed.) AMS Proceedings of Symposia in Applied Mathematics, vol. 48. pp 79–125, American (1994)

  32. Chaudry, M.A., S.M.Z.: On A Class of Incomplete Gamma Functions with Applications. CRC Press (2001)

  33. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59, 1586–1593 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Magin, R.L., Ovadia, M.: Modeling the cardiac tissue electrode interface using fractional calculus. J. Vib. Control. 14(9-10), 1431–1442 (2008)

    Article  MATH  Google Scholar 

  35. Mathieu, B., Melchior, P., Oustaloup, A., Ceyral, C.: Fractional differentiation for edge detection. Signal Process. 83(11), 2421–2432 (2003)

    Article  MATH  Google Scholar 

  36. MATLAB (2014). http://www.mathworks.com/products/matlab/

  37. Mhamdi, T., Hasan, O., Tahar, S.: On the formalization of the Lebesgue integration theory in HOL. In: Interactive Theorem Proving, pp 387–402. Springer, LNCS (2010)

  38. Mhamdi, T., Hasan, O., Tahar, S.: On the formalization of the Lebesgue integration theory in HOL. In: Interactive Theorem Proving, LNCS, vol. 6172, pp 387–402. Springer (2011)

  39. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sci. 17, 348–375 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  40. Mittag-Leffler, G.: Sur La Nouvelle Fonction E α(x). C.R. Acad. Sci. Paris 137, 554–558 (1903)

    Google Scholar 

  41. Naqvi, A.: Comments on waves in planar waveguide containing Chiral Nihility metamaterial. Opt. Commun. 284, 215–216 (2011)

    Article  Google Scholar 

  42. Paulson, L.C.: ML for the Working Programmer. Cambridge University Press (1996)

  43. Shintani, T.: On Kronecker limit formula for real quadratic fields (1976)

  44. Siddique U.: Formalization of Gamma function in Higher-order Logic - HOL Proof Script (2014). http://save.seecs.nust.edu.pk/students/umair/gamma.html

  45. Siddique, U., Hasan, O.: Formal analysis of fractional order systems in HOL. In: Formal Methods in Computer Aided Design (FMCAD), pp 163–170 (2011)

  46. Simpson, C.: Computer theorem proving in mathematics. Lett. Math. Phys. 69(1), 287–315 (2004). doi:10.1007/s11005-004-0607-9

  47. Slind, K., Norrish, M.: A brief overview of HOL4. In: TPHOLs, pp 28–32 (2008)

  48. Sparavigna, A.C.: Fractional Differentiation Based Image Processing. arXiv:0910.2381 (2009)

  49. Van Der Laan, C.G., Temme, N.M.: Calculation of Special Functions: The Gamma Function, the Exponential Integrals and Error-like Functions. Centrum voor Wiskunde en Informatica, Amsterdam. The Netherlands (1984)

  50. Walck, C.: Hand-Book on Statistical Distributions for Experimentalists (1996)

  51. Wiman, A.: Über Den Fundamental Satz in Der Theorie Der Funcktionen E α(x). Acta Mathematica 29, 191–201 (1905)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umair Siddique.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddique, U., Hasan, O. On the Formalization of Gamma Function in HOL. J Autom Reasoning 53, 407–429 (2014). https://doi.org/10.1007/s10817-014-9311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-014-9311-3

Keywords

Navigation