Skip to main content
Log in

A Framework for Proof Systems

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

Linear logic can be used as a meta-logic to specify a range of object-level proof systems. In particular, we show that by providing different polarizations within a focused proof system for linear logic, one can account for natural deduction (normal and non-normal), sequent proofs (with and without cut), and tableaux proofs. Armed with just a few, simple variations to the linear logic encodings, more proof systems can be accommodated, including proof system using generalized elimination and generalized introduction rules. In general, most of these proof systems are developed for both classical and intuitionistic logics. By using simple results about linear logic, we can also give simple and modular proofs of the soundness and relative completeness of all the proof systems we consider.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrusci, V.M., Ruet, P.: Non-commutative logic I: the multiplicative fragment. Ann. Pure Appl. Logic 101(1), 29–64 (1999)

    Article  MathSciNet  Google Scholar 

  2. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Log. Comput. 2(3), 297–347 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Avron, A.: Hypersequents, logical consequence and intermediate logics for concurrency. Ann. Math. Artif. Intell. 4, 225–248 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chaudhuri, K., Pfenning, F., Price, G.: A logical characterization of forward and backward chaining in the inverse method. J. Autom. Reason. 40(2–3), 133–177 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5, 56–68 (1940)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical logics. In: 23th Symp. on Logic in Computer Science, pp. 229–240. IEEE Computer Society Press (2008)

  7. D’Agostino, M., Mondadori, M.: The taming of the cut. Classical refutations with analytic cut. J. Log. Comput. 4(3), 285–319 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Danos, V., Joinet, J.-B., Schellinx, H.: LKT and LKQ: sequent calculi for second order logic based upon dual linear decompositions of classical implication. In: Girard, J.-Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic. London Mathematical Society Lecture Note Series, no. 222, pp. 211–224. Cambridge University Press (1995)

  9. Dyckhoff, R., Lengrand, S.: LJQ: a strongly focused calculus for intuitionistic logic. In: Beckmann, A., et al. (eds.) Computability in Europe 2006. LNCS, vol. 3988, pp. 173–185. Springer (2006)

  10. Felty, A., Miller, D.: Specifying theorem provers in a higher-order logic programming language. In: Ninth International Conference on Automated Deduction, pp. 61–80. Argonne, IL, Springer (1988)

  11. Gentzen, G.: Investigations into logical deductions. In: Szabo, M.E. (ed.) The Collected Papers of Gerhard Gentzen, pp. 68–131. North-Holland, Amsterdam (1969)

    Google Scholar 

  12. Girard, J.-Y.: Le Point Aveugle: Cours de Logique: Tome 1, Vers la Perfection. Hermann (2006)

  13. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. ACM 40(1), 143–184 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Henriksen, A.S.: Using LJF as a Framework for Proof Systems. Technical Report, U. of Copenhagen (2009). Available from http://hal.inria.fr/inria-00442159/en/

  16. Hodas, J., Miller, D.: Logic programming in a fragment of intuitionistic linear logic. Inf. Comput. 110(2), 327–365 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hughes, D.: A minimal classical sequent calculus free of structural rule. Ann. Pure Appl. Logic 161(10), 1244–1253 (2010)

    Article  Google Scholar 

  18. Lambek, J.: The mathematics of sentence structure. Am. Math. Mon. 65, 154–169 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  19. Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and classical logics. Theor. Comput. Sci. 410(46), 4747–4768 (2009)

    Article  MATH  Google Scholar 

  20. Maehara, S.: Eine darstellung der intuitionistischen logik in der klassischen. Nagoya Math. J. 7, 45–64 (1954)

    MATH  MathSciNet  Google Scholar 

  21. Miller, D.: Forum: a multiple-conclusion specification logic. Theor. Comput. Sci. 165(1), 201–232 (1996)

    Article  MATH  Google Scholar 

  22. Miller, D., Nigam, V.: Incorporating tables into proofs. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007: Computer Science Logic. LNCS, vol. 4646, pp. 466–480. Springer (2007)

  23. Miller, D., Pimentel, E.: Using linear logic to reason about sequent systems. In: Egly, U., Fermüller, C.G. (eds.) International Conference on Automated Reasoning with Analytic Tableaux and Related Methods. LNCS, vol. 2381, pp. 2–23. Springer (2002)

  24. Miller, D., Pimentel, E.: Linear logic as a framework for specifying sequent calculus. In: van Eijck, J., van Oostrom, V., Visser, A. (eds.) Logic Colloquium ’99: Proceedings of the Annual European Summer Meeting of the Association for Symbolic Logic. Lecture Notes in Logic, pp. 111–135. A K Peters Ltd (2004)

  25. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for logic programming. Ann. Pure Appl. Logic 51, 125–157 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  26. Negri, S., von Plato, J.: Structural Proof Theory. Cambridge University Press (2001)

  27. Nigam, V.: Exploiting Non-canonicity in the Sequent Calculus. PhD thesis, Ecole Polytechnique (2009)

  28. Nigam, V., Miller, D.: Focusing in linear meta-logic. In: Proceedings of IJCAR: International Joint Conference on Automated Reasoning. LNAI, vol. 5195, pp. 507–522. Springer (2008)

  29. Nigam, V., Miller, D.: Focusing in Linear Meta-logic: Extended Report. Available at: http://hal.inria.fr/inria-00281631 (2008). Accessed 24 May 2008

  30. Nigam, V., Miller, D.: Algorithmic specifications in linear logic with subexponentials. In: ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP), pp. 129–140 (2009)

  31. Parigot, M.: Free deduction: an analysis of “computations” in classical logic. In: Proceedings of the First Russian Conference on Logic Programming, pp. 361–380. London, UK, Springer (1992)

    Google Scholar 

  32. Paulson, L.C.: The foundation of a generic theorem prover. J. Autom. Reason. 5, 363–397 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  33. Pfenning, F.: Elf: a language for logic definition and verified metaprogramming. In: Logic in Computer Science, pp. 313–321. Monterey, CA (1989)

  34. Pimentel, E., Miller, D.: On the specification of sequent systems. In: LPAR 2005: 12th International Conference on Logic for Programming, Artificial Intelligence and Reasoning. LNAI, no. 3835, pp. 352–366 (2005)

  35. Pimentel, E.G.: Lógica Linear e a Especificação de Sistemas Computacionais. PhD thesis, Universidade Federal de Minas Gerais, Belo Horizonte, M.G., Brasil (2001). Written in English

  36. Prawitz, D.: Natural Deduction. Almqvist & Wiksell, Uppsala (1965)

    MATH  Google Scholar 

  37. Schroeder-Heister, P.: A natural extension of natural deduction. J. Symb. Log. 49(4), 1284–1300 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  38. Sieg, W., Byrnes, J.: Normal natural deduction proofs (in classical logic). Stud. Log. 60(1), 67–106 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  39. Smullyan, R.M.: First-Order Logic. Springer, New York (1968)

    MATH  Google Scholar 

  40. Smullyan, R.M.: Analytic cut. J. Symb. Log. 33(4), 560–564 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  41. von Plato, J.: Natural deduction with general elimination rules. Arch. Math. Log. 40(7), 541–567 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Nigam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nigam, V., Miller, D. A Framework for Proof Systems. J Autom Reasoning 45, 157–188 (2010). https://doi.org/10.1007/s10817-010-9182-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-010-9182-1

Keywords

Navigation